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Chaitanya Sunil Koparkar

MOSTLY-SERIALIZED DATA STRUCTURES FOR PARALLEL AND GENERAL-PURPOSE
PROGRAMMING

Implementing a functional programming language using pointer-free, serialized representations of alge-

braic datatypes has proved extremely efficient, especially for programs that operate over bulk tree-like

data. But is it only a domain-specific solution? Whether this approach is suitable for a general-purpose

language implementation hinges on whether it can be rounded out to also perform reasonably well for

programs that allocate data in small pieces and out-of-order. Also, while serialized representations work

well for sequential programs, there is an intrinsic tension between density and parallelism. As the name

implies, serialized data must often be read and written serially, due to the lack of pointers. These challenges

are the focus of this dissertation. We show that mostly-serialized data structures are a safe, efficient, and

practical foundation for a parallel and general-purpose programming language.

To support parallelism, first, enough indexing information must be left in the representation so that

parallel tasks can “skip ahead” and process multiple subtrees in parallel. Second, the allocation areas

must be bifurcated to allow allocation of outputs in parallel. we propose a strategy where form follows

function: where data representation retains pointers only insofar as parallelism is needed, and both data

representation and control flow “bottom out” to sequential pieces of work that are pointer-free. We present

Parallel Gibbon, a compiler that obtains the benefits of dense data formats and parallelism. we formalize

the semantics of the parallel location calculus underpinning this novel implementation strategy, and show

that it is type-safe. Parallel Gibbon exceeds the parallel performance of existing, mature compilers for

purely functional programs.

Next, we propose a new memory management strategy for a language with mostly-serialized data

structures. It uses a hybrid, generational garbage collector, where growable regions of memory are the

units of allocation. Regions are bump-allocated into a young-generation and objects are bump-allocated

within those regions. Minor collections copy data into larger regions in the old generation, which uses

region-level reference counting with another (backup) tracing collector. Implementing this approach re-

quires overcoming several challenges unique to the mostly-serialized, dense data representation strategy.

The resulting system maintains excellent performance for bulk traversal and allocation programs, while

greatly improving performance on other kinds of workloads. For small, out-of-order allocations where

this approach is weakest, the performance more closely resembles mature compilers that have been heav-

ily optimized for such programs, using traditional memory representations.
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Introduction

Functional languages, such as Haskell and dialects of ML, offer algebraic datatypes, a powerful lan-

guage based technology that can express many complex data structures and, nevertheless, provide a pleas-

antly high level of abstraction for application programmers. The high-level of specification of algebraic

datatypes leaves a great deal of wiggle room for a range of low level implementation strategies. The way

their structures are laid out in memory and how they are accessed by functions can have a major impact

on performance.

Most conventional approaches resort to using fully or mostly boxed representations of values, using

one heap object per data constructor as shown in Figure 1.1. Consuming such a value requires consuming

a full heap object, plus a header word, plus a word-sized pointer. This representation is efficient for random

access and shape-changing modifications, but not for workloads that allocate or process large values in

bulk. On such workloads, pointer-heavy representations are not favored by current trends in computer

architecture. Chasing pointers leads to scattered memory access patterns and poor data locality, which are

very inefficient. Programs that traverse and construct trees of algebraic datatypes are widely used across

all domains of computer science, ranging from compiler passes, to the web-browser Document Object

Model, to particle simulations with space-partitioning trees, and thus optimizing their performance has

wide-ranging benefits.

L    2 L    4

 N   3 L    7

 N   6

Figure 1.1. Standard in-memory representation of a binary search tree—a collection of

heap objects linked with pointers. N is short for Node and L is short for Leaf.
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1. INTRODUCTION

…………… ……………K X
1 byte n bytes

Tag Scalars

? bytes ? bytes

Non-scalar child 1 Child 2

Object (fixed)

Object (extended)

Figure 1.2. Anatomy of a Gibbon object. Each object starts with a one-byte tag corre-

sponding to the data constructor within a sum type. The tag is followed by 𝑛 bytes (known

at compile time) of scalar fields such as numbers, booleans etc. The non-scalar, or packed,

fields come next. Each packed field can contain an unbounded number of bytes which

cannot be known at compile time.

Representing values as pointer-free, serialized byte arrays can have huge performance advantages [26,

44, 38]. Recently, several lines of work have explored computing directly with serialized data representa-

tions of varying density. Libraries like Cap’N Proto [64], FlatBuffers [27], Haskell Compact Normal Forms

(CNF) [68] etc. allow a complete value to reside in a single contiguous chunk of memory. That is, the

start of the value, or, the root of the tree representing the algebraic datatype, and all its subtrees can be

allocated and stored in a single memory chunk using these libraries. The pointers between the subtrees are

still retained so that they can be reached and traversed efficiently, but they are transformed into relative,

offset-based pointers. Since it is serialized, this memory chunk can be stored on disk or sent across the

network, and crucially, the resident value can be traversed by clients without a separate deserialization pass,

thereby bypassing a major source of overhead.

Such efficiency is also achieved by Gibbon [66], a compiler for a polymorphic, higher-order subset of

Haskell1, which compiles its programs to C code, and employs whole-program compilation and monomor-

phization. Thanks to using pointer-free, serialized representations as the native representation of recur-

sive algebraic datatypes, Gibbon can harness both efficient IO to external devices, skipping traditional

(de)serialization like the aforementioned libraries, and faster traversals of data in memory, unlike previous

systems. Recursive traversals over irregular tree data are over 2× faster in Gibbon than the fastest existing

compilers, including ghc, gcc, java, ocaml, mlton, rust, chez, etc., and 3× and 10× faster than Compact Normal

Forms and Cap’N Proto respectively.

1A subset of “Strict Haskell” (-XStrict), specifically.
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1. INTRODUCTION

N 6 N 3 L 2 L 4 L 7

left right

left right

tag scalar

tag scalar

Figure 1.3. The tree in Figure 1.1 represented as a fully serialized Gibbon value. N is short

for Node and L is short for Leaf.

Gibbon uses depth-first layouts similar to virtually all (de)serialization frameworks and the aforemen-

tioned libraries for operating directly on serialized data. In the context of Gibbon, “serialized” refers not

just to storing subtrees consecutively in memory, but also a form of compaction: eliminating pointers be-

tween subtrees by inlining child structures directly into their parents where possible. Figure 1.2—which is

explained in more detail in Section 2.2.2—shows the anatomy of a Gibbon object. Gibbon uses growable

regions (essentially, memory buffers) as units of allocation. Each region contains a single value, which is

itself made up of numerous objects2. Objects living in the same region are packed side-by-side. Pointers

are retained, but they are the exception rather than ubiquitious.

A Gibbon data constructor is, by default, only a one-byte tag3, followed immediately by its fields.

Wherever possible, this tag occurs inline in a bytestream that hosts multiple objects. As such, values tend

to be compact in RAM and be laid out in contiguous blocks, which admit efficient linear traversals. With

this (mostly) contiguous layout, a structure can be reliably traversed in a linear fashion, and thereby reap

substantial benefits of modern optimizations such as hardware prefetching. For example, a data construc-

tor such as Node, in data STree = Node Int STree STree | Leaf Int | Empty, treats Int as a value type which is

inlined immediately after a (one-byte) tag, and the type STree is treated just the same! The next two fields

of type STree are inlined one after the other in the same region, as shown in Figure 1.3.

When pointers are needed for efficient operation of the program, the programmer could include Ptr T

types explicitly, but it is more common to let the compiler automatically extend the datatype to include a

tagged indirection pointer, Ind (Ptr STree), as an implicit additional case to the sum type. Using such point-

ers, objects can point to objects in other regions, which is crucial to support sharing common structures.
2We use the term value to refer to logical values in the source language, and object to refer to the allocation resulting from a

single data constructor: e.g., a list versus a single cons-cell.
3A number assigned to each data constructor of a datatype; it starts at 0 and can go up to 255.
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1. INTRODUCTION

The implicit inclusion of indirections is why Gibbon structures are only mostly serialized4. We will discuss

further details of including pointers in the representation in Section 2.2.3.

There are several advantages to working directly with serialized representations of data structures:

• Data can be read from disk or network without deserialization (e.g. via mmap).

• A serialized representation can take many times fewer bytes to represent than a normal pointer-

based representation, which improves performance of the memory subsystem.

• Since many objects are allocated in the same region, fewer memory allocations are needed to

create serialized structures.

• Data can be traversed significantly faster once in memory due to predictable, linear memory

accesses that are favored by optimizations like hardware prefetching.

But, while serialized representations work well for sequential programs, there is an intrinsic tension be-

tween density and parallelism. As the name implies, serialized data must often be read and written serially,

due to the lack of pointers. Also, Gibbon’s approach to data representation has proved effective for com-

piling tree-traversals. But is it only a domian-specific solution? Whether this approach is suitable for a

general-purpose language implementation hinges on whether it can be rounded out to also perform rea-

sonably well for programs that allocate data in small pieces and out-of-order. These challenges are the

focus of this dissertation. We show that mostly-serialized data structures are a safe, efficient, and practical

foundation for a parallel and general-purpose programming language.

1.1. Reasoning about performance of programs compiled with Gibbon

While Gibbon can compile and run all sorts of programs, certain programs receive a performance

boost while certain others receive a performance penalty. This penalty is because Gibbon and its serialized

representations favor a certain allocation pattern, and inefficiencies arise when programs stray from this

favored pattern. In this section we provide an intuition on how to estimate the performance of programs

compiled with Gibbon. We will return to this topic in Sections 2.2.2 and 2.3.

Gibbon’s allocation mechanism and the associated costs are quite different from other languages that

use pointer-based data structures. In those languages, each object created on the heap typically triggers

an expensive memory allocation (malloc)5. For example, constructing a linked-list in C will require one
4Indirection pointers are sometimes needed for the compiler to preserve the program’s asymptotic complexity, e.g., when

compiling a program that shares common data between two values, including newer values that reference older ones.
5Certain compilers use a bump pointer nursery to allocate objects; this is cheap and fast, but the unit of allocation is still

an individual object, and too many objects will eventually fill up the nursery and trigger a collection. On the contrary, objects
4



1. INTRODUCTION

memory allocation per cons-cell. This is not true in Gibbon, however, as it uses growable regions; each

region contains a single value which is made up of numerous objects packed side-by-side. Writing multiple

objects in a region doesn’t require any memory allocations and is therefore cheap. As a result, constructing

a linked-list in a single region in Gibbon is quite efficient. But, allocating a region itself requires a memory

allocation. A region also has some metadata associated with it that must be tracked and kept up-to-date,

which adds further overhead. Thus, to reason about a program’s performance we must reason about its

region allocation behavior. How might we do that?

As a rough approximation, simple naturally recursive functions that construct values in order are very

efficient, since they allocate only one region. Functions which construct values out of order need to allocate

more regions and might not always perform well. Tail recursive functions usually need to allocate one

region per recursive call and are therefore slow in Gibbon. (In Chapter 4, we address these performance

sore spots by making region allocations efficient using a modified memory management system.) We

explain what in-order construction means and other details regarding it next.

1.1.1. Region allocation. Values constructed using a data constructor are called packed values and

these are stored in regions6. Gibbon allocates one region to store each packed value. Within a region,

all objects must be written in the same order they appear in the region. Intuitively, we can imagine each

region having a single write cursor that starts at the beginning and chugs along the region performing

writes in a continuous fashion. The write cursor is not allowed to jump forward. Objects of recursive

types can be arbitrarily large. Thus, we cannot delay writing an object and jump forward to a byte-address

after it, because we cannot know how much space will the delayed object require. We learn the size of an

object/value only after it is completely written.

Gibbon uses “location inference” to decide what region an object belongs to and also where in that

region it will be, relative to other objects. Without knowing all the details of the location inference pro-

cedure, one simple rule is quite helpful in understanding how a value will map on to a region. When all

packed fields of a data constructor are initialized in order, the constructor tag and all the fields will be

written in a single region. The tag will be written at the beginning, the first field will be written next,

and so on. When a packed field of a data constructor is initialized out of order, it will be written in its own

created in a region do not fill up the nursery and thus don’t trigger a collection. But, allocating too many regions will trigger a

collection.
6Numbers, booleans etc. are called scalar values and these are stored on the stack or in registers.

5



1. INTRODUCTION

C nC 2 C 1 N

(a) In-memory representation of a linked-list con-

structed by mkList. C is short for Cons and N is short

for Nil.

C nTup 0 N

C nTup 1 C 1 Ind

C nTup 3 C 2 Ind

(b) In-memory representation of a structure con-

structed by mkListSum. Tup is the tag for the tuple,

C is short for Cons, and N is short for Nil.

Figure 1.4. mkList versus mkListSum.

separate region. That’s because the final byte-address of this field in the original region can only be known

after its preceding fields have been written—we cannot know the size of these preceding fields sooner.

For example, given a data constructor (K x y z), if the program binds x first, y next, and z last, this

is considered an in-order construction and this entire value will be allocated in a single region. But, if the

program binds z first, x next, and y last, this value will not be allocated in a single region. Here we cannot

statically know how much space will x and y occupy before they’re written. Thus, these fields have to be

written in the region first, and only then can we know the final byte-address where z should be written. But

since z has to be initialized before x and y, it has to be allocated in a separate region. Next, an indirection

pointing to the separately allocated z will be written at the byte-address after y, to avoid copying z.

If the data dependencies allow it, we can transform the program so that the fields of data constructors

are always initialized in order. For example, if x, y and z can be initialized independently of each other, we

can modify the program so that it initializes these fields in the desired order. But if x or y depend on z in

some way, then their order of initialization cannot be changed.

1.1.2. In-order construction, example. The following Gibbon function constructs a list value in

order. Here a single region will be created and the entire list will be written within this region. (The final

result is similar to CDR-coding [15] techniques developed previously.)

mkList :: Int → List

mkList 0 = Nil

mkList n = Cons n (mkList (n-1))

6



1. INTRODUCTION

Benchmark Serialized Repr. Pointer-based Repr.

mkList 0.020 0.043

mkListSum 0.610 0.079

Table 1.1. Run time in seconds of mkList and mkListSum compiled with Gibbon to use seri-

alized and pointer-based representations.

Each function7 is given its own output region that is used to write the function’s output. Let us consider

the two cases of mkList. The case when the input number is 0 is trivial; the constructor Nil has no fields and

therefore a tag corresponding to Nil can be written in the output region directly. The second case is also

straightforward; Cons only has one packed field and therefore the tag corresponding to Cons, the number

n, and the recursively constructed list of length (n-1) can all be written to the output region directly.

Figure 1.4a shows the structure Gibbon constructs.

1.1.3. Out-of-order construction, example. Let us now consider a slight variation of mkList that

returns a tuple containing a list and the sum of its elements:

mkListSum :: Int → (Int , List)

mkListSum 0 = (0, Nil)

mkListSum n = let y = mkListSum (n-1) in

case y of

(sum , ls) → (n + sum , Cons n ls)

The case when the input number is 0 is trivial like before. But the second case is quite different. Here the

final output value of the function depends on the value y resulting from the recursive call mkListSum (n-1).

Thus, y has to be initialized first. But y cannot be initialized in the function’s output region because y is

not the first packed object in the output and also because the components of y appear in a different order

in the final output—it has to be initialized in its own separate region. We can now pattern match on y

to extract its components. Afterwards, the tag corresponding to the tuple (Tup), the number (n+sum), the

tag corresponding to Cons, the number n, and an indirection pointing to the list ls (contained within y)

will be written in the output region. Thus, mkListSum will allocate a separate region for each recursive call.

Figure 1.4b shows the structure Gibbon constructs.

7Functions that return a scalar type do not use an output region.

7



1. INTRODUCTION

1.1.4. Performance evaluation. Table 1.1 shows the run time performance of these functions com-

piled with Gibbon to use serialized and pointer-based representations. We use a single-socket Intel E5-2699

18 core machine with 64GB of memory and running Ubuntu 18.04 for this experiment. mkListSum performs

more work of allocating and pattern matching on tuples compared to mkList, but they are algorithmically

quite similar to each other. Correspondingly, their run time is in the same ballpark in the pointer-based

representation. But this is not true for the serialized representation where mkListSum is 30× slower than

mkList! In fact, mkListSum with serialized representation is 8× slower than in pointer-based representation

as well. Of course, the excessive region allocations are to blame here. A slight change to the program has

degraded its performance significantly. Presently, Gibbon doesn’t warn programmers when a function has

poor region allocation behavior like mkListSum. We plan to add this feature in the future. Other functions

such as foldLeft versus foldRight have similar performance characteristics—foldRight is significantly more

efficient since it allocates fewer regions.

1.2. Parallelism and Serialization

The lack of pointers makes running parallel computations over serialized representations challenging.

For example, to sum all the leaf values of a tree node in parallel, we need to access its left and right subtree

simultaneously. In a serialized representation, the only way to reach the right subtree is to walk over the

left subtree first to find its end, which essentially sequentializes the whole computation. To change that,

first, enough indexing information must be left in the representation so parallel tasks can “skip ahead” and

process multiple subtrees in parallel. Second, the allocation areas must be bifurcated to allow allocation of

outputs in parallel.

In this dissertation we propose a strategy where form follows function: where data representation re-

tains pointers only insofar as parallelism is needed, and both data representation and control flow “bottom

out” to sequential pieces of work that are pointer-free. That is, granularity-control in the data mirrors

traditional granularity-control in parallel task scheduling. We demonstrate this solution by extending the

Gibbon compiler with support for parallel computation, introducing Parallel Gibbon. We also extend Gib-

bon’s typed intermediate language, adding parallelism and give an updated formal semantics (Section 3.2).

In addition to tree traversals, we show that Parallel Gibbon can efficiently compile other parallel pro-

grams, such as sort and search algorithms (Section 3.4) to match or exceed the performance of the best

existing parallel functional compilers. We choose a functional focus for three primary reasons:

8



1. INTRODUCTION

• Many tree traversals have different input and output types—as in a compiler pass that converts

between intermediate languages—which necessitates out-of-place traversals even in an imperative

language.

• Even pure programs can use mutable data, via linear types. (Gibbon uses these and eschews the

IO monad.)

• The purely-functional parallel Gibbon programs considered in this work are intrinsically data-race

free.

The last point is worth emphasizing: every time a language adds both parallel constructs and mutable data,

it enables data-races and must define a memory model to give them meaning. In this work, we extend Gib-

bon with linearly-typed primitives for mutable data8 (Section 3.3.6), while keeping the language race-free.

we claim that linearly-typed mutable data, efficient data representation, and compiler-supported paral-

lelism are a synergistic combination. In Parallel Gibbon programs, as in other purely functional parallel

programs, parallelism annotations not only don’t introduce races but also do not affect program semantics,

meaning that these programs are deterministic as well as data-race free.

Ultimately, we believe that this work shows one path forward for high-performance, purely-functional

programs. Parallelism in functional programming has long been regarded as theoretically promising, but

has a spottier track record in practice, due to problems in runtime systems, data representation, and mem-

ory management. Parallel Gibbon directly addresses these sore spots, showing how a purely-functional

program operating on fine-grained, irregular data can also run fast (sequentially) and parallelize efficiently.

This complements more well-trodden areas of compiler research on parallelism, such as dense and sparse

collective operations on arrays [5, 1, 46, 13]. That is, the approach described in this paper—for general-

purpose, recursive functional programs, including tree traversals—could be combined with targeted EDSLs

or libraries implementing additional parallel programming idioms, such as Haskell’s Accelerate [16]. Both

determinism and data-race-freedom would be compositional within the functional-parallelism setting. In-

deed, we have taken the first steps in this direction, adding a small set of parallel array primitives to Gibbon

(Section 3.3.6).

1.3. Memory Management

In classic region calculi [62, 60], regions can be immediately deallocated at the end of their lexical

scope. On the other hand, Gibbon’s indirection pointers can cause a region to stay alive beyond its lexical

8Leveraging the Linear Haskell [9] extensions now available in GHC 9
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1. INTRODUCTION

scope, for example if a pointer to it is captured by another region which is still in scope. Thus, an additional

garbage collection scheme is needed to free regions that live beyond their lexical scope.

There have been previous incomplete answers to memory management based on regions, which lack

sufficiently prompt deallocation. Prior work on Gibbon used a combination of region-based memory man-

agement, with region-level reference counting [34]. Like the early work on MLkit[60] (or more recent

work on UrWeb [19]), object lifetime depends on the lexically-scoped region it is assigned to. For exam-

ple, if an object is assigned to the “global region” it may not be freed until the end of program execution,

even if it became unreachable much earlier than that. In contrast, while tracing collectors are not garbage

free,they can bound (unreachable) garbage to, e.g., half of heap size using a semi-space collector, but these

region-based alternatives cannot.

Consider a program that repeatedly inserts and deletes from a balanced tree (we will later return to

this in Section 2.3.3). Each insertion of an element allocates 𝑙𝑜𝑔(𝑁 ) tree nodes and makes 𝑙𝑜𝑔(𝑁 ) unreach-

able, on average. Such a program will leak memory over time with prior region-based solutions (due to

delayed collection), but will use bounded space with a traditional garbage collector (GC). No practical,

general-purpose automatic memory management system can fail to free memory in this scenario. For that

reason, MLKit later added backup garbage-collection within regions [23]. UrWeb, on the other hand, fills

a specialized role where allocated memory lasts only as long as a web request. But what about Gibbon and

its mostly serialized approach to data management for executing Strict Haskell code?

We propose a garbage collector that takes Gibbon from a domain-specific tool for tree traversals to

a general-purpose functional language implementation. In this new system named GC-Gibbon, we adopt

the tried-and-true design of the tracing, generational collector, which is used by many state-of-the-art im-

plementations of functional languages. Such a moving collector makes for a good match with Gibbon’s

mostly serialized heap, where compactness and linear layout can be maintained opportunistically, as the

collector copies values during collections, eliminating pointers during copying. The fast bump allocated

young-generation also makes region allocations quite efficient. We employ reference counting in the old

generation because Gibbon’s regions contain many objects on average, especially after collection, so the

overhead of (non-deferred) reference counting is amortized at the region level. Along with these advan-

tages, there are new challenges to address, including:

• Gibbon’s regions contain dense byte-aligned data and hence have no header words or other

padding or extra space.

10



1. INTRODUCTION

• Indirection pointers result in pointers into the middle of packed data structures, at arbitrary

byte offsets.

• Regions contain partially-written values, for example, a tree node with a left field but no right

field (yet).

• Partially-written values grow over time, in addition to allocating new values (that comprise

multiple serialized objects).

• Gibbon programs have new kinds of roots—they include not just the usual local variables, but

implicit cursor variables that point at the boundaries of objects in regions.

1.4. Thesis statement and outline of this dissertation

With the above background, I can now state the thesis:

Mostly-serialized data structures are a safe, efficient, and practical foundation for a par-

allel and general-purpose programming language.

This dissertation supports this thesis as follows:

• serialized data structures: Recent work defined a type-safe language called the Location Cal-

culus [65] that formalizes the notion of programming with serialized data structures. I give back-

ground on LoCal and the Gibbon compiler in Chapter 2.

• parallelism: In Chapter 3, I extend LoCal to formalize a parallel location calculus that supports

task parallelism and show that the resulting language—named LoCalpar—is type safe. This ex-

tension requires adding back pointers to the representation in a limited way, thus making the

representation mostly-serialized.

• general-purpose: I demonstrate the generality of this approach by showing that it’s possible to

retain Gibbon’s strong performance on tree-traversals where the serialized data approach is most

effective and also improve Gibbon to achieve reasonable performance on out-of-order small allo-

cations where the approach is weakest, more closely resembling mature compilers and runtime

systems that have been heavily optimized for such programs, using traditional memory represen-

tations. The key here is a novel memory management strategy that I describe in Chapter 4.

• efficiency: In Chapters 3 and 4, I defend the efficiency of the contributions by showing per-

formance results for a variety of benchmarks. To study the garbage collector’s performance, I

compare it to other systems with highly optimized and mature collectors such as GHC [39] and

Java [21]. To study the performance of LoCalpar I compare it to other languages and systems that

11



1. INTRODUCTION

support efficient parallelism for recursive, functional programs such as MaPLe [67], Multicore

OCaml [56] and GHC.

• practical: I defend the practicality of this approach by showing how a language like Haskell can

be compiled to use serialized data structures. Gibbon is already a whole-program compiler that

can compile a subset of Haskell. In addition to this, I show in Chapter 5 how it could be used as

an accelerator for a portion of a big Haskell application that is compiled and run using GHC.

1.5. Previously published work

This dissertation is based on research done jointly with other collaborators, which appears in the

following papers:

• Chaitanya Koparkar, Vidush Singhal, Aditya Gupta, Mike Rainey, Michael Vollmer, Sam Tobin-

Hochstadt, Milind Kulkarni, Ryan R. Newton. 2023. Garbage Collection for Mostly-Serialized

Heaps. Submitted to ICFP 2023.

• Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind Kulkarni, and Ryan R. Newton. 2021.

Efficient Tree-Traversals: Reconciling Parallelism and Dense Data Representations. In Proceedings

of the ACM on Programming Languages, Volume 5, Issue ICFP. (ICFP 2021)

And it builds on the Gibbon compiler and its LoCal intermediate language which were introduced in the

following papers; while I was a collaborator on these, I consider them as prior background work:

• Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni, and Ryan R.

Newton. 2019. LoCal: A Language for Programs Operating on Serialized Data. In Proceedings of

the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI

2019).

• Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka, Chaitanya Koparkar, Milind Kulka-

rni, Sam Tobin-Hochstadt and Ryan R. Newton. 2017. Compiling Tree Transforms to Operate on

Packed Representations. European Conference on Object-Oriented Programming, 2017. (ECOOP

2017).
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Background: LoCal and the Gibbon Compiler

In this chapter we give a high-level overview of LoCal and the Gibbon compiler. We will use the

program given in Figure 2.1a as an example. Because these techniques for compiling tree-traversals are

directly applicable to compilers themselves, we use a miniature compiler pass as an example. The example

defines a datatype Exp which represents the abstract syntax of a language that supports integer arithmetic,

and a function constFold that implements constant folding for this language. Constant folding is a common

compiler optimization in which expressions with constant operands are evaluated at compile time, thus

improving the run-time performance. But here we are trying to optimize the performance of the constant

folding pass itself rather than the performance of the program produced by constant folding. constFold

walks over the abstract-syntax-tree, and substitutes all expressions of the form (Plus (Lit i) (Lit j)) with

(Lit (i+j)). We only show a simplified constFold — for example it doesn’t recur on the children of Plus

before checking if they’re literals — to keep it simple enough to serve as a running example.

The program in Figure 2.1a is written using the front-end language for Gibbon, a polymorphic, higher-

order subset of Haskell, with strict rather than lazy evaluation. The (∥) operator used on line 14 denotes a

parallel tuple — it marks its operands to evaluate in parallel with each other. But with a purely functional

source language, it is semantically equivalent to a sequential tuple—i.e. replacing all “∥” occurences with

“,” yields a valid program—and should be treated as one for now. We will return to this topic in Chapter 3.

Gibbon uses LoCal (short for location calculus) as an intermediate representation (IR) with explicit

byte-addressed, mostly-serialized data layout. To go from the vanilla Haskell front-end language to LoCal,

it performs location inference, a variant of region inference [62, 60], on the input programs. The LoCal IR

code generated by Gibbon for the constFold function is shown in Figure 2.1b. In the following, we use it to

sketch out how LoCal works.

2.1. A Primer on Location-Calculus

LoCal is a type-safe IR that represents programs operating on densely encoded (serialized) data. In

LoCal, all values reside within regions. Abstractly, a region is an unbounded storage area for raw data,

13



2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

1 data Exp = Lit Int

2 | Plus Exp Exp

3 | Sub Exp Exp

4 | Let Sym Exp Exp

5 · · ·

6

7 constFold :: Exp → Exp

8 constFold exp = case exp of

9 Lit i → Lit i

10 Plus e1 e2 →

11 case (e1, e2) of

12 (Lit i,Lit j) → Lit (i+j)

13 _ → let (e3,e4) =

14 ( constFold e1 ∥

15 constFold e2 )

16 in Plus e3 e4

17 Sub e1 e2 → · · ·

(a) Constant folding written using the front-end lan-

guage for Gibbon (Haskell).

1 constFold:: ∀∀∀𝑙1𝑟1 𝑙2𝑟2 . Exp@𝑙1𝑟1 → Exp@𝑙2𝑟2

2 constFold [𝑙1𝑟1 𝑙2𝑟2 ] exp = case exp of

3 Lit (i:Int@𝑙𝑖𝑟1 ) → (Lit 𝑙2𝑟2 i)

4 Plus (e1: Exp@𝑙𝑎𝑟1 ) (e2: Exp@𝑙𝑏𝑟1 ) →

5 case (e1,e2) of

6 (Lit(i:Int@𝑙𝑐𝑟1 ), Lit(j:Int@𝑙𝑑𝑟1 ))

7 → (Lit 𝑙2𝑟2 (i+j))

8 _ →

9 letloc 𝑙3𝑟2 = 𝑙2𝑟2 + 1 in

10 let e3 : Exp@𝑙3𝑟2 =

11 constFold [𝑙𝑎
𝑟1 𝑙3𝑟2 ] e1 in

12 letloc 𝑙4𝑟2 = after(Exp@𝑙3𝑟2 ) in

13 let e4 : Exp@𝑙4𝑟2 =

14 constFold [𝑙𝑏
𝑟1 𝑙4𝑟2 ] e2 in

15 (Plus 𝑙2𝑟2 e3 e4)

16 Sub (e1: Exp@𝑙𝑎𝑟1 ) (e2: Exp@𝑙𝑏𝑟1 ) →

17 · · ·

(b) Figure 2.1a compiled into LoCal IR by Gibbon.

Figure 2.1. Constant folding.

a mini-heap unto itself. All programs make explicit not only the region to which a value belongs to,

but also a location at which that value is written. In LoCal notation, a location 𝑙𝑟 resides in region 𝑟 .

Locations are fine-grained indices into a region (memory addresses), but unlike pointers in languages like

C, they can be written to just once and arbitrary arithmetic on locations is not allowed. Locations are only

introduced relative to other locations. Once allocated at a particular location, a value cannot be shared

with another location (within the same region or across regions), and it has to be copied to allocate it at a

different location. In practice, the Gibbon compiler supports sharing using pointers, which we discuss in

Section 2.2.3.
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2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

A new location is either: at the start of a region, one unit past an existing location1, or after all elements

of a value rooted at an existing location. In the program given in Figure 2.1b, the location l3r2 is one past

the location l2r2 (line 9) and l4r2 is after every element of the value rooted at location l3r2 (line 12). This

serial ordering imposed on locations is what serializes the resulting value in heap memory. Any expression

that allocates takes an extra argument: a location-region pair that specifies where the allocation should

happen. The types of such expressions are decorated with these location-region pairs. For example, the

(Lit l2r2 i) data constructor (line 3) allocates a tag at location l2 in region r2, and has type (Exp@l2r2 ). Any

scalar arguments passed to a data constructor, such as the unpacked integer i in this case, are allocated

immediately after the tag. Functions may be polymorphic over any of their input or output locations, and

these locations are provided at call-sites. In the example, the function constFold is polymorphic over an

input location l1r1 and an output location l2r2 , and values for these are given at all call-sites. In spite of the

forall quantifier in its type signature, the input and output regions given at its call-site must be distinct

(r1 ≠ r2) to prevent overwrites. This property is checked by LoCal’s type-system (described in Section 3.2.3),

which makes multiple writes to any location illegal—with the use of a nursery environment— ensuring that

function calls like (constFold [l𝑥 r𝑥 l𝑥 r𝑥 ] x) don’t type check.

2.1.1. Sequential execution model. LoCal has a dynamic semantics which can run programs se-

quentially [65]. In this model, regions are represented as serialized heaps, where each heap is an array

of cells that can store primitive values (data constructor tags, numbers, etc). A write operation, such as

the application of a data constructor, allocates to a fresh cell on the heap, and a read operation reads the

contents of a cell. Performing multiple reads on a single cell is safe, and the type-system ensures that

each cell (location) is written to only once. At run time, locations in the source language translate to heap

indices, which are the concrete addresses of the cells where reads/writes happen. Computing addresses of

locations which are at the start of a region, or one past another location is straightforward — the addresses

get initialized to 0 and (prev + 1) respectively. But evaluating an after expression, to get an address one

past the end of another, variable-sized value, requires more work.

A naive computational interpretation of this after is to simply scan over a value to compute its end.

In LoCal’s formal model, this is referred to as the end-witness judgment. Locations computed via after are
1LoCal’s formalism uses an abstract unit, namely a heap cell, thus abstracting over computing exact memory addresses until

run time. Also, it only permits binding a location that’s one cell past an existing location. Practically, one cell is equal to one byte

in Gibbon. Also, Gibbon allows a location to directly cross 𝑁 bytes to efficiently support multi-byte scalar values such as integers

or floating point numbers.
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2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

used during both read and write operations. For example, when a LoCal case expression pattern matches

on (Plus e1 e2), it has to scan past e1 in order to know the starting address of e2, which adds𝑂 (𝑛) amount

of extra work in a fully serialized representation! In practice, if values are read in the same order in which

they were serialized, a linear scan can be avoided by tracking end-witnesses that are naturally computed

in the evaluation of the program, for example, by having every read return the address of the cell after

it. Intuitively, we can imagine there being a single read pointer that is used to perform all reads in the

program. It always points to the next cell to be read on heap, and each read advances it by one. When

the program starts executing, the read pointer starts at the beginning of the heap and it chugs along in a

continuous fashion. Allocating a serialized value can be thought of in a similar way — that there is a single

allocation pointer that starts at the beginning of the heap, and moves along its length performing writes,

as illustrated in Figure 2.2b. To avoid changing the asymptotic complexity of programs which read values

out-of-order, the Gibbon compiler by default inserts some offset information— such as pointers to some

fields of a data constructor— back into the representation, as I discuss in Section 2.2.3. But this doesn’t

allow out-of-order allocations, which will be needed to add parallelism to LoCal (Chapter 3).

2.1.2. Sequential execution model, example. To make this execution model concrete, let us go

over a step-by-step trace of the semantics executing constFold on (Plus (Lit 20) (Plus (Lit 10) (Lit 12))).

The execution trace is given in Figure 2.2. The store S maps regions to their corresponding heaps, and

the location map M maps symbolic locations to their corresponding heap indices. The evaluation starts

at (constFold [𝑙1𝑟1 𝑙2𝑟2] e), and is given a store containing a fully allocated input region 𝑟1 and an empty

region 𝑟2 to allocate the output, along with a location map containing the locations 𝑙1𝑟1 and 𝑙2𝑟2 initialized

to the starting addresses of these regions. Since the input region has a Plus at the top, execution continues

at line 5. The pattern match binds the locations 𝑙𝑟1
𝑎 and 𝑙𝑟1

𝑏
to the addresses of the sub-expressions (Lit 20)

and (Plus (Lit 10) (Lit 12)) respectively2. Since both the sub-expressions are not constants, execution

continues at line 10. Then, the output location of the first sub-expression, 𝑙3𝑟2 , is defined to be one past

𝑙2
𝑟2 , and constFold is invoked recursively on this sub-expression. Step 4 copies3 the first sub-expression

2The execution model binds unique locations each time. For example, when execution reaches this pattern match for the

first time, the model will use a unique suffix #1 to bind locations 𝑙𝑟1
𝑎 #1 and 𝑙𝑟1

𝑏
#1 and update all uses of 𝑙𝑟1

𝑎 and 𝑙𝑟1
𝑏

to use this fresh

version. When execution reaches this pattern match again, perhaps due to a recursive call, it will bind locations 𝑙𝑟1
𝑎 #2 and 𝑙𝑟1

𝑏
#2,

and so on. We don’t show the #𝑛 suffix here on any location to simplify presentation.
3This value is copied because line 3 in Figure 2.1b has a data constructor (Lit 𝑙2𝑟2 i) on the right hand side of the case

alternative. If we update the program to return the input expression exp directly, Gibbon would allocate a pointer and the value

(Lit 20) would be shared between the input and the output regions. We discuss how sharing works in Section 3.3.3.
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(a) (b)

Figure 2.2. (a) Sequential, step-by-step execution of the program from Figure 2.1b, and

(b) the heap operations corresponding to the output region r2. Each step is named after its

line number in the program and only shows the changes relative to the previous step. AP

is the allocation pointer. P is short for Plus, and L is short for Lit.

by writing a tag 𝐿 (short for Lit), followed by the integer 20 on the heap. Then, the output location of

the second sub-expression, 𝑙4𝑟2 , is defined to be one past every element of the first sub-expression, which

occupies two cells after the 0𝑡ℎ cell. Thus, 𝑙4𝑟2 gets initialized with the address of the 3𝑟𝑑 cell. constFold is

now invoked recursively for the second sub-expression. Following similar steps, the second sub-expression

is allocated at 𝑙4𝑟2 . Since the second sub-expression is a Plus with constant operands, it is transformed to

(Lit 22). Finally, Step 16 writes the tag 𝑃 (short for Plus) which completes the construction of the full

expression, (Plus (Lit 20) (Lit 22)).

2.1.3. Another example, constructing a serialized linked-list. Figure 2.3b shows the Haskell

source for a simple mkList function, which compiles into the intermediate LoCal code in Figure 2.3a. This

code operates as follows. The arguments of mkList include the number n and a symbolic location 𝑙𝑟 , where
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data List = Cons Int List | Nil

mkList :: ∀∀∀ 𝑙𝑟 . Int → List@𝑙𝑟

mkList [𝑙𝑟 ] n =

if n == 0 then Nil 𝑙𝑟 else

letloc 𝑙1𝑟 = 𝑙𝑟 + 9 in

let tail: List@𝑙1𝑟 =

mkList [𝑙1𝑟 ] (n-1) in

Cons 𝑙𝑟 n tail

(a) mkList compiled into LoCal IR by Gibbon.

mkList :: Int → List

mkList 0 = Nil

mkList n = Cons n (mkList (n-1))

(b) mkList’s starting Haskell source code.

………………

larlr

C n
1 byte 8 bytes

C n-1

(c) In-memory representation of a linked-list

constructed by Figure 2.3a. C is short for Cons.

Figure 2.3. Constructing a serialized linked-list.

the resulting list of length n will be allocated. This allocation technique is a form of destination-passing

style [53]. If n is zero, mkList simply allocates Nil at location 𝑙𝑟 . Otherwise, it starts constructing a cons

cell. First it binds a location 𝑙1𝑟 that is 9 bytes past the location 𝑙𝑟 (one byte for the Cons tag and 8 bytes

for the integer). Next, it recursively constructs a list of length (n-1) at location 𝑙1𝑟 . Then it writes the Cons

tag and the integer n starting at location 𝑙𝑟 , which completes the construction of this cons cell. Gibbon’s

location inference algorithm places the cons cell and its tail within the same region because the allocations

in mkList happen in order. The resulting list is shown in Figure 2.3c; it uses a compact structure similar to

CDR-coding [15]. If the allocations were to happen out-of-order, such as when reversing a linked-list, the

resulting list will not be compact. We will return to this topic in Section 2.3.1.

2.2. Compiling LoCal

In the following, we discuss how the Gibbon compiler compiles and runs LoCal programs.

2.2.1. Compiler structure. Gibbon’s overall architecture is shown in Figure 2.4. It is implemented

as a micropass, whole-program compiler for a polymorphic, higher-order subset of Strict Haskell (option

-XStrict), which generates C code at the end. It employs monomorphization and specialization to optimize

programs at the source language level. Within Gibbon, tuples, and built-in scalar types like Int, Bool etc. are

unboxed (never require indirection pointers). To go from the vanilla Haskell front-end language to LoCal,

it performs location inference, a variant of region inference [62, 60], on the input programs. It performs
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LoCalSource NoCal

Type check
Simplify
InferLocations

FindTraversals
RandAccess

RouteEnds
ToCursors

Unariser

CodeGen
Indirections

Figure 2.4. Gibbon compiler architecture.

full region/location type checking between every pair of passes on the LoCal intermediate representation

(IR). After a series of LoCal⇒LoCal passes, the program is lowered to a second IR, NoCal. NoCal is not

a calculus at all, but a C-like low-level language where memory operations are made explicit. Code in

this form manipulates pointers into regions that are called cursors because of their (largely continuous)

motion through regions. NoCal is internally represented as a distinct AST type, with high level (non-

cursor) operations excluded. The final backend is completely standard. It eliminates tuples in the unariser,

performs simple optimizations, and generates C code. Because of inter-region indirection pointers, a small

runtime system is necessary to support the generated code, as we describe next.

2.2.2. Regions, objects and chunks. In this section we describe Gibbon’s runtime system that is

is responsible for its region-based memory management. In brief, it uses region-level reference counts.

Each region is implemented as linked-list of contiguous memory chunks, doubling in size each time. This

memory is write-once, and immutability allows it to track reference counts only at the region level. Exiting

a letregion decrements the region’s reference count, and it is freed when no other regions point into it.

Every region itself resembles a heap with a single allocation pointer, which is used to perform all writes

in it. The allocation pointer always points to the next available cell on the heap, and new objects are bump

allocated. Bump allocation is the mechanism Gibbon programs use to achieve efficient, linear allocation

patterns, such as that of mkList, where the result value (e.g., list) is laid out in a single region. But if a

function’s allocation pattern differs, such as when reversing a linked-list or when building a binary tree

by allocating its right subtree before the left, the resulting value is placed across multiple regions. Even

in such cases where allocations happen out-of-order, Gibbon could place the result in a single region by

inlining all values allocated in intermediate regions. Gibbon does not, because doing so would create extra

work for copying data, and often worsen the asymptotic complexity of the input program. As such, Gibbon

programs tend to feature mixed allocation patterns, and therefore tend to give rise to complicated memory
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1k

….....................…… 

First 
chunk

Second 
chunk

Inbound cross-region indirection

2k

{}1

Region metadata

refcount

outset1st chunk

….. EoC

Figure 2.5. Run time representation of regions in Gibbon (and GC-Gibbon’s old-

generation). This particular logical region is made up of two chunks, with an End-of-

chunk pointer linking the data. There’s an incoming tagged indirection which causes the

refcount to be 1. Pointers occurring in the data representation are shown with solid ar-

rows, whereas other implementation related pointers are shown with dashed arrows.

layouts, wherein some intermediate values are allocated in separate regions and are shared using pointers

(as we explain in Section 2.2.3).

There are two subcomponents to each object: there is the fixed portion of an object, consisting of a

tag, and any constant-sized fields such as integer scalars. Then there is the extended portion of the object

which fills a variable number of bytes due to child objects being “inlined” within its representation. Even

the extended object may be smaller than the complete logical value, which would include all memory

reachable by the transitive closure of any indirections.

Gibbon allocates a constant-sized chunk of contiguous memory for each fresh region, as Figure 2.5

shows. When this chunk is exhausted, a new one which is double in size is allocated and linked with the

previous one using a pointer. This doubling policy is used up to an upper bound, after which constant-sized

new chunks are allocated 4.

In order to detect if a chunk is exhausted, every write operation needs to know where the current

chunk ends, so that it can perform bounds checking. For this reason, every location is dilated to be a pair

of (alloc,end) pointers at run time. To mark that the serialized stream of data continues in another chunk

Gibbon implicitly adds yet another reserved constructor to each datatype—(EoC Ptr)—which signals an end

of chunk and stores a pointer to the head of the next chunk. We refer to these pointers as chunk redirection

pointers. When a reader hits an EoC tag, they must use the stored pointer to resume reading.

2.2.3. Indirection and Shortcut pointers. The initial published version of LoCal’s formalism did

not model pointers [65], but extensions (including LoCalpar [34] described in this dissertation) do, thereby
4Keeping the initial chunk small is optimal in situations where a region contains a small value. But if a region needs to grow

to store a large value, the doubling policy would amortize the overall allocation overhead.
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allowing fields to be initialized out of order and point indirectly into other regions. Such extensions are

realized by two types of pointers: tagged indirection pointers and untagged shortcut pointers.

Sharing via tagged indirection pointers. Tagged indirection pointers enable a program to share a

value among multiple locations. For example, one might write code to construct a binary tree node as

(let x = buildTree n in Node n x x), and expect a single, shared value to be allocated for the left and right

subtrees. But without a way to store the addresses of previously allocated values in the data representation,

the right subtree would have to be allocated by copying the entire left subtree at the appropriate location.

To avoid copying, Gibbon implicitly compiles every datatype d to have an additional reserved constructor

(Ind (Ptr d)), which stores an absolute pointer to a value of type d. Given such additional constructors,

Gibbon can compile the above code to the following: (let x = buildTree n in Node n x (Ind (addrOf x))).

In this version, Gibbon can ensure that the call to buildTree allocates directly in place, in the left subtree

after the Node tag. Thus a pointer is needed only for the right subtree as shown in Figure 2.6a. Similarly, the

identity function (id x = x) becomes (id x = Ind (addrOf x)). Indirection pointers are critical to Gibbon’s

ability to compile functions without changing their asymptotic complexity. They provide “opt in” pointers,

with the default case being dense serialization, and the exceptional case being indirection. The runtime

overhead (matching a one byte Ind constructor) is placed on the exceptional case.

Random-access via shortcut pointers. While indirection pointers enable allocation of values out-

of-order, they do not enable reading values out-of-order. To this end, Gibbon uses untagged shortcut

pointers to enable constant-time random-access to certain fields on a per-data-constructor, per-field basis.

The reason shortcut pointers are necessary is that some programs need to “skip over” certain parts of a

value to read it out-of-order, and there is no way to accomplish this if the value is fully serialized—the only

way to access a particular part in it is to scan past all of the data that has been serialized before it. For

example, to compile a program which fetches the rightmost leaf of a binary tree with the correct asymptotic

complexiy (𝑂 (log n)), Gibbon stores the absolute address of the right subtree in each intermediate node5

so that it can be accesssed directly without traversing the left subtree, which would make this a 𝑂 (n)

operation. Figure 2.6 shows such a node.

In principle, shortcut pointers require less space to store than in a normal pointer-based representation,

because no pointer is needed for the leftmost non-scalar field, e.g. one pointer for a binary tree, instead of

two. A possible implementation choice would be to store the integer size in bytes of packed fields which
5Gibbon constructs such nodes using a different constructor, (Node' (Ptr Tree) Int Tree Tree), to indicate the presence

of a shortcut pointer.
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C n Ind…………N 4

(a) A binary tree node that uses a tagged indirection

pointer as the right subtree to share the object allo-

cated for the left subtree. N is short for Node, Ind is a

reserved tag used for indirection pointers.

C nN’ ………… ..…3

(b) A binary tree node that stores an untagged short-

cut pointer to the right subtree so that it can be ac-

cessed directly. N' is short for Node', a variant of Node

that contains an additional (Ptr Tree) field.

Figure 2.6. Data representation with pointers used for sharing (a) and random-access (b).

can be used to skip over them. For example, the address of the right subtree can be computed as the address

of the left subtree plus size of the left subtree, given that all the fields are serialized side-by-side in a single

region. The runtime representation of regions (chunked, growable, as described previously) makes this

choice slightly less efficient in practice unfortunately.

2.2.4. Memory management. In classic region calculi [62, 60], regions can be immediately deallo-

cated at the end of their lexical scope. But, indirection pointers can cause a region to stay alive beyond its

lexical scope, for example, if a pointer to it is captured by another region which is still in scope. Therefore

Gibbon needed an additional reference-counting scheme to free regions that live beyond their lexical scope.

The way this legacy approach worked is, when a region is initialized—with a letregion—its reference count

is set to 1, and it is decremented when the region goes out of scope. At this stage, if its reference count hits

zero, it is deallocated. Correspondingly, regions also maintain an outset that tracks other regions to which

this region points. When a region is freed, the reference counts of all pointed-to regions are decremented

by iterating this outset. Reference counts are stored in per-region metadata, with per-chunk footers linking

to the metadata. Thus the pointer to the chunk footer does double duty for bounds checking and accessing

metadata.

2.3. Limitations of Gibbon

Prior work on Gibbon supports a wide variety of programs in a functionally-correct way, but with sig-

nificant excessive memory retention in some cases, plus a a major skew in its performance landscape—some

programs massively sped up, and others massively slowed down. Specifically, programs which allocate

large structures in order, or which map or fold over such structures, get compiled to use a maximally-

serialized heap, making them significantly more efficient than their pointer-based counterparts. On the
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reverse :: List → List → List

reverse Nil acc = acc

reverse (x:xs) acc = reverse xs (x:acc)

(a) Starting Haskell source code for accumulator-style list-reverse.

reverse :: ∀∀∀ 𝑙𝑟 𝑚𝑠 𝑛𝑡 . List@𝑙𝑟 → List@𝑚𝑠 → List@𝑛𝑡

reverse [𝑙𝑟 𝑚𝑠 𝑛𝑡 ] xs acc = case xs of

Nil → Ind 𝑛𝑡 (addrOf acc)

Cons (y:Int@𝑙𝑦𝑟 ) (ys:List@𝑙𝑦𝑠𝑟 ) →

letregion 𝑢 in letloc 𝑜1𝑢 =start 𝑢 in

letloc 𝑜2𝑢 =𝑜1𝑢 + 9 in

let cpy: List@𝑜2𝑢 = Ind 𝑜2𝑢 (addrOf acc)

let acc ': List@𝑜1𝑢 = Cons 𝑜1𝑢 y cpy in

reverse [𝑙𝑦𝑠
𝑟 𝑜1𝑢 𝑛𝑡 ] ys acc '

(b) reverse compiled into LoCal IR by Gibbon.

N

C nC 0 Ind C nC 1 Ind

C nC n-1 Ind C nC n Ind

…

…

(c) In-memory representation of the linked-list in Figure 2.3c reversed using Figure 2.7b. C is short for Cons and N is

short for Nil.

Figure 2.7. Reversing a linked-list.

other hand, programs requiring complicated memory layouts, and small allocations, show various weak-

nesses of the memory management system.

2.3.1. Allocation overheads. Consider the Haskell code for the standard accumulator-style list-

reverse function given in Figure 2.7a. The strict version of this code must build the reversed list from

back-to-front. When compiled to LoCal IR, as in Figure 2.7b, we find a letregion nested inside the Cons

case. Essentially, every output cons cell is allocated in a separate region, linked together using indirection

pointers (Figure 2.7c)—a traditional linked-list! Programs like reverse which allocate small regions at a

very high rate show the overheads of region allocation and collection in Gibbon. In fact, the list-reverse
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program compiled by Gibbon is 4× slower than its pointer-based version. This isn’t surprising because the

Gibbon program performs the same number of region-malloc’s as the pointer-based version does for ob-

jects, but also does additional work to track region metadata information such as the reference counts and

outsets. Note that creating excessive number of Cons cells isn’t the problem here, but rather it’s that reverse

leads to excessive region allocations. That is why mkList when compiled with Gibbon is very efficient but

reverse is not, even though they create the same number of Cons cells.

2.3.2. Fragmentation. Another problem that is highlighted in Figure 2.7c is that of fragmentation.

First, reverting to a pointer-based representation means all subsequent traversals of this list would be

slower because of poor data locality and pointer chasing. A little slower than in a traditional pointer-based

heap, because of processing the extra tag-check on each indirection pointer. Second, the space usage is

not efficient, with only one Cons cell per region, most space is left unoccupied.

2.3.3. Delayed collection. As we alluded earlier, programs in which objects in a region have signif-

icantly different lifetimes can be memory-inefficient due to the coarsening of reference counts, and thus

can also leak memory: not only leaking the unused space (as in the one-Cons-cell-per-region example),

but because of space used by formerly-reachable objects sharing the region. Consider a program which

repeatedly inserts a random number into a binary search tree (given in Figure 2.8a in the Appendix). Being

a functional tree-insert, it copies the 𝑙𝑜𝑔(𝑁 ) nodes along the path it updates. The output tree containing

these fresh 𝑙𝑜𝑔(𝑁 ) nodes must be written to location 𝑘1
𝑠 . This is the only output region, as you can see

there are no letregion expressions in the function body. All the parts of the tree that are not recursed into

and updated, are linked into the output tree via explicit indirection pointers. The additional loop function

is included as an example client that repeatedly updates the tree, inserting or deleting random even num-

bers within the range [0, 512). This artificial client is representative of a common class of programs that

update some structure repeatedly, such as a web-server that maintains a data structure modified by suc-

cessive incoming requests. With Gibbon’s previous memory management strategy, such programs would

leak memory over time, even though the live data is bounded by a constant in this example. Figure 2.8b

demonstrates how old regions and deleted nodes are kept alive. In this heap, region 𝑟4 is still in scope. All

other regions have non-zero reference counts only because of indirection pointers. Only a small subset of

this heap, however, is truly live. All of region 𝑟4 is live because it is still in scope. Next, region 𝑟4 contains a

pointer to an object in region 𝑟3 (highlighted in stippled green), thus keeping it live. Everything else in this

heap is unreachable and should be freed! But the coarsened reference counting collector is unable to free
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loop :: ∀∀∀ 𝑙𝑟 𝑘𝑠 . RNG → Int → Tree@𝑙𝑟 → Tree@𝑘𝑠

loop [𝑙𝑟 𝑘𝑠 ] rng i tr = if i == 0 then Ind 𝑘𝑠 (addrOf tr) else

let (n,rng ') = next rng 0 512 in

letregion t in letloc 𝑗𝑡 = start t in

let tr ':Tree@ 𝑗𝑡 = if (n%2)==0 then insert [𝑙𝑟 𝑗𝑡 ] n tr else delete [𝑙𝑟 𝑗𝑡 ] (n-1) tr

in loop rng ' (i-1) tr '

insert :: ∀∀∀ 𝑙1𝑟 𝑘1𝑠 . Int → Tree@𝑙1𝑟 → Tree@𝑘1𝑠

insert [𝑙1𝑟 𝑘1𝑠 ] n tr = case tr of

Node (m:Int@𝑙𝑚𝑟 ) (x:Tree@𝑙𝑥𝑟 ) (y:Tree@𝑙𝑦𝑟 )→

if m < n then

letloc 𝑘2𝑠 = 𝑘1𝑠 + 1 in

let x':Tree@𝑘2𝑠 = Ind 𝑘2𝑠 (addrOf x) in

letloc 𝑘3𝑠 = after Tree@𝑘2𝑠 in

let y':Tree@𝑘3𝑠 = insert [𝑙𝑦
𝑟 𝑘3𝑠 ] n y in

Node 𝑘1𝑠 m x' y'

else ... −− Insert into the left subtree.

· · · −− cases for Leaf and Null

(a) A LoCal program that repeatedly inserts a random number into a binary search tree.

…         ……
………….         …░░

░░

……………………

∞

r4

r2
r3

In-scope:

░ Extended object 
boundary

Indirection pointer

rc:1

rc:1
rc:1

Region boundary

…………………… ░░

(Reachable data)

(b) Heap representation of a long run of program that updates some structure frequently, like the program given in

Figure 2.8a. The objects highlighted in red are unreachable but their collection can be arbitrarily delayed.
Figure 2.8. A serialized heap with arbitrarily delayed collection in Gibbon.

any dead space because a pointer from a dead part of region 𝑟3 keeps region 𝑟2 alive, thus creating a space

leak—stretching the lifetime of objects to depend on a longer lived, even global, region. A supplemental

collection is required to properly collect such heaps.
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Reconciling Parallelism and Serialization

The lack of pointers makes running parallel computations over serialized representations challenging.

In this chapter we introduce the necessary extensions to LoCal and the Gibbon compiler to enable par-

allelism. We propose a strategy where form follows function: where data representation retains pointers

only insofar as parallelism is needed, and both data representation and control flow “bottom out” to se-

quential pieces of work that are pointer-free. That is, granularity-control in the data mirrors traditional

granularity-control in parallel task scheduling. In this chapter:

• We introduce the first compiler that combines parallelism with automatic dense data represen-

tations for trees. While dense data [65] and efficient parallelism [67, 48] have been shown to

independently yield large speedups on tree-traversing programs, our system is the first to com-

bine these sources of speedup, yielding the fastest known performance generated by a compiler

for this class of programs.

• We formalize the semantics of a parallel location calculus (Section 3.2) that underpins the compiler,

including a proof of its type-safety (Section 3.2.6). To do so, we extend prior work on location

calculi [65], which in turn builds on work in region calculi [62].

• We evaluate our implementation (Section 3.3) on several benchmarks from the literature (Sec-

tion 3.4.4). On a single thread, our implementation is 1.93×, 2.53×, and 2.14× faster compared to

MaPLe [67] (an extension of MLton), OCaml, and GHC, respectively. When utilizing 48 threads,

our geomean speedup is 1.92×, 3.73× and 4.01×, meaning that the use of dense representations to

improve sequential processing performance coexists with scalable parallelism. Most notably, the

speedup on a five-pass compiler drawn from a university compiler course was 1.02×, 2.2× and

10.7× over those alternative languages.
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3. RECONCILING PARALLELISM AND SERIALIZATION

3.1. Parallelism in Location-Calculus

In this section, we outline various latent opportunities for parallelism that exist in LoCal programs

(irrespective of annotation with “∥”). The first kind of parallelism is available when programs access the

store in a read-only fashion, such as in an interpreter, for example.

interp : ∀∀∀ 𝑙𝑟 . Exp @ 𝑙𝑟 → Int

interp [𝑙𝑟 ] t = case t of

Lit (i : Int @ 𝑙𝑖
𝑟 ) → i

Plus (e1 : Exp @ 𝑙𝑎
𝑟 ) (e2 : Exp @ 𝑙𝑏

𝑟 ) →

(interp [𝑙𝑎
𝑟 ] a) + (interp [𝑙𝑏

𝑟 ] b)

· · ·

Even though the recursive calls in the Plus case can safely evaluate in parallel, there is a subtlety: parallel

evaluation is efficient only if the Plus constructor stores offset information for its right child node. If it does,

then the address of e2 can be calculated in constant time, thereby allowing the calls to proceed immediately

in parallel. If there is no offset information, then the overall tree traversal is necessarily sequential, because

the starting address of e2 can be obtained only after a full traversal of e1. As such, there is a tradeoff between

space and time, that is, the cost of the space to store the offsets, versus the time of the sequential traversal

forced by the absence of offsets.

Programs that write to the store also provide opportunities for parallelism. The most immediate such

opportunity exists when the program performs writes that affect different regions. Such writes can happen

in parallel because different regions cannot overlap in memory. There is another kind of parallelism that

is more challenging to exploit, but is at least as important as the others: intra-region parallelism that can

be realized by allowing different fields of the same constructor to be filled in parallel. This is crucial in

LoCal programs, where large, serialized data (large trees or DAGs) frequently occupy only a small number

of regions, and yet there are opportunities to exploit parallelism in their construction.

Consider the case in Figure 2.1b which recursively calls constFold on the sub-expressions of Plus. If

we want to access the parallelism between the recursive calls, we need to break the data dependency

that the right branch has on the left. The starting address of the right branch, namely 𝑙4𝑟2 , is assigned to

be end witness of the left branch by the after expression. But the end witness of the left branch is, in

general, known only after the left branch is completely filled, which would effectively sequentialize the

computation. One non-starter would be to ask the programmer to specify the size of the left branch up
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front, which would make it possible to calculate the starting address of the right branch. Unfortunately,

this approach would introduce safety issues, such as incorrect size information, of exactly the kind that

LoCal is designed to prevent. Instead, we explore an approach that is safe-by-construction and efficient,

as we explain next.

3.2. Region-Parallel LoCal

To address the challenges of parallel evaluation—in concert with dense, mostly-serialized data repre-

sentations —we start by presenting an execution model, LoCalpar, which can utilize all potential parallelism

in LoCal programs. Parallelism in this formal model is generated implicitly, by allowing every let-bound

expression to potentially evaluate in parallel with the body. Accordingly, the language omits explicit par-

allelism “hints” (∥). That is, you’ll see in the next sections that implicitly parallel let has both a sequential

and parallel evaluation rule. By modeling every possible parallelization, the formal model is general — it

formalizes all possible valid parallel schedules, and all valid heap layouts. We return to the pragmatic issue

of selecting efficient parallelizations, i.e. granularity control, in Section 3.3.1.

3.2.1. Region memory and parallel tasks. In the formal model, while parallelism is implicit, there

is still a restriction that at most one task allocates in a given region at a time. To realize intra-region

parallelism, the model introduces fresh, intermediate regions as needed, that is, when the schedule takes

a parallel evaluation step for a given let-bound expression, and the body tries to allocate in the same

region. To demonstrate this, let us consider a trace of the region-parallel evaluation of the program from

Figure 2.1b, corresponding to the schedule shown in Figure 3.1, where the recursive calls to constFold on

lines 12 and 14 run in parallel with each other. The parallel fork point for the first recursive call occurs on

the 11𝑡ℎ step of the trace. At this point, the evaluation of the let-bound expression results in the creation

of a new child task, and the continuation of the body of the let expression in the parent task.

Each task has its own private view of memory, which is realized by giving the child and parent task

copies of the store S and location map M . These copies differ in one way: each sees a different mapping for

the starting location of e3, namely 𝑙3𝑟2 . The child task sees the mapping 𝑙3𝑟2 ↦→ ⟨𝑟2, 1⟩ , which is the ultimate

starting address of e3 in the heap. The parent task sees a different mapping for 𝑙3𝑟2 , namely ⟨𝑟2, ivar 𝑒3⟩ .

This address is an ivar : it behaves exactly like an I-Var [7], and, in our example, stands in for the completion

of the memory being filled for e3, by the child task. Any expression in the body of the let expression that

tries to read from this location blocks on the completion of the child task.
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(a) (b)

Figure 3.1. (a) Parallel, step-by-step execution of the program from Figure 2.1b such that

parallel allocations happen only in separate regions, and (b) the heap operations corre-

sponding to the output region r2. Each step is named after its line number in the program

and only shows the changes relative to the previous step. P is short for Plus, and L is short

for Lit.

The only exception to this blocking-rule is a letloc after expression, which is handled differently.

Such an expression occurs at line 12, just after the parent continues after the fork point. At this step, the

parent task uses an after expression to assign an appropriate location for the starting address of e4, one

past every byte occupied by e3. If we synchronize with the child task here, the computation will effectively

be sequential. In order to avoid that, the starting address of e4 is assigned to be 𝑙4𝑟2 ↦→ ⟨𝑟2,&(𝑟3, 0)⟩ . This

address is an indirection pointing to the start of fresh region 𝑟3, and causes the parent task to allocate e4

in the region 𝑟3 instead of 𝑟2, which is being allocated to by the child task, thus maintaining the single-

threaded-per-region allocation invariant. The parent and child tasks have, in effect, two different allocation

pointers for what will functionally be the same region (after joining). The use of e3 on line 15 forces the

parent task to join with its child task. In particular, ⟨𝑟2, ivar 𝑒3⟩ is substituted by ⟨𝑟2, 1⟩ , the starting
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address of e3, in the expression and the location map M . Also, all the new entries in the location map M

and store S of the child are merged into the corresponding environments in the parent. Finally, the regions

𝑟2 and 𝑟3 are linked with a pointer, corresponding to the indirection pointer that was added for the starting

address of e4.

3.2.2. Syntax and operational semantics. In this section, we present the formal semantics of our

parallel location calculus, LoCalpar. This semantics has also been mechanically tested in PLT Redex [24].

The grammar for the language is given in Figure 3.2. Again, all parallelism in this model language is

introduced implicitly, by evaluating let expressions. There is no explicit syntax for introducing parallelism

in our language, and consequently the language is, from the perspective of a client, exactly the same as

the sequential language [65].

The parallel operational semantics does, however, differ from the sequential semantics, most notably

from the introduction of a richer form of indexing in regions. Whereas in sequential LoCal a region index

consists simply of a non-negative integer, it is enriched to an extended region index i⋄ in LoCalpar. It

consists of either a concrete index i, an ivar 𝑥 , or an indirection pointer &(r, i). A concrete index is a

non-negative integer that specifies the final position of a value in a region. An ivar is a synchronization

variable that is used to coordinate between parallel tasks. For example, the ivar 𝑒3 in the sample trace

in Figure 3.1, is used to synchronize with the child task that is allocating e3. An indirection &(r, i) points

to the address i in the region r , and is used to link together different chunks of the same logical region,

which may have been introduced to enable intra-region parallel allocation. For example, in the sample

trace in Figure 3.1, a pointer &(r3, 0) written at the end of the value e3 links it with the value e4, which is

allocated to a separate region r3. And a concrete location cl is enriched to a pair ⟨r, i⋄⟩ , of a region r , and an

extended region index i⋄. The state configurations of LoCalpar appear in Figure 3.3. Just like in sequential

LoCal, a sequential state of LoCalpar, t, contains a store S, location map M , and an expression e. But by

using enriched concrete locations, the location map also has the ability to contain indirection pointers. A

value that can be written to a heap, hv, is similarly enriched to allow indirection pointers.

Figures 3.5 and 3.6 show the complete dynamic semantics of LoCalpar. The driver which runs a LoCalpar

program initially loads all data types, functions, type checks them, and if successful, then seeds the 𝐹𝑢𝑛𝑐 −

𝑡𝑖𝑜𝑛, TypeOfCon, and TypeOfField environments. Let e0 be the main expression. If e0 type checks with

respect to the T-Program rule (given in Figure B.3), then the main program is safe to run. The initial

configuration for the machine is a single task, (𝜏, ⟨r, 0⟩, ∅; { l ↦→ ⟨r, 0⟩ }; e0), and the program can start
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K ∈ Data Constructors, 𝜏c ∈ Type Constructors,

𝑥,𝑦, 𝑓 ∈ Variables, l, 𝑙𝑟 ∈ Symbolic Locations,

r ∈ Regions, i, j ∈ Concrete Region Indices,

Top-Level Programs top ::=
Ð⇀
dd ;
Ð⇀
fd ; e

Datatype Declarations dd ::= data 𝜏c =
ÐÐÐ⇀
K Ð⇀𝜏

Function Declarations fd ::= 𝑓 : ts; 𝑓Ð⇀𝑥 = e

Located Types 𝜏 ::= 𝜏@lr

Types 𝜏 ::= 𝜏c

Type Scheme ts ::= ∀Ð⇀
𝑙𝑟
.
Ð⇀
𝜏 → 𝜏

Extended Region Indices i⋄, j⋄ ::= i | ivar 𝑥 | &(r, i)

Concrete Locations cl ::= ⟨r, i⋄⟩l

Values v ::= 𝑥 | cl

Expressions e ::= v

| 𝑓 [
Ð⇀
𝑙𝑟 ] Ð⇀v

| K lr Ð⇀v

| let 𝑥 : 𝜏 = e in e

| letloc lr = le in e

| letregion r in e

| case v of
Ð⇀pat

Pattern pat ::= K (ÐÐ⇀𝑥 : 𝜏) → e

Location Expressions le ::= start r

| l𝑟 + 1

| after 𝜏

Figure 3.2. Grammar of LoCalpar.
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Store S ::= { r1 ↦→ h1, . . . , r𝑛 ↦→ h𝑛 }

Heap Values hv ::= K | &(r, i)

Heap h ::= { i1 ↦→ hv1, . . . , i𝑛 ↦→ hv𝑛 }

Location Map M ::= { lr1
1 ↦→ cl1, . . . , lr𝑛

𝑛 ↦→ cl𝑛 }

Sequential States t ::= S; M; e

Parallel Tasks T ::= (𝜏, cl, t)

Task Set T ::= { T1, . . . , T𝑛 }

Figure 3.3. Extended grammar of LoCalpar for dynamic semantics.

Typing Env. Γ ::= { 𝑥1 ↦→ 𝜏1, . . . , 𝑥𝑛 ↦→ 𝜏𝑛 }

Store Typing Σ ::= { l𝑟1
1 ↦→ 𝜏1, . . . , l𝑟𝑛𝑛 ↦→ 𝜏𝑛 }

Constraint Env. C ::= { l𝑟1
1 ↦→ le1, . . . , l𝑟𝑛𝑛 ↦→ le𝑛 }

Allocation Pointers A ::= { 𝑟1 ↦→ 𝑎𝑝1, . . . , 𝑟𝑛 ↦→ 𝑎𝑝𝑛 }

where 𝑎𝑝 = lr | ∅

Nursery N ::= { l𝑟1
1 , . . . , l

𝑟𝑛
𝑛 }

Typing Env. Map Γ ::= { cl1 ↦→ Γ1, . . . , cl𝑛 ↦→ Γ𝑛 }

Store Typing Map Σ ::= { cl1 ↦→ Σ1, . . . , cl𝑛 ↦→ Σ𝑛 }

Constraint Env. Map C ::= { cl1 ↦→ C1, . . . , cl𝑛 ↦→ C𝑛 }

Allocation Pointers Map A ::= { cl1 ↦→ A1, . . . , cl𝑛 ↦→ A𝑛 }

Nursery Map N ::= { cl1 ↦→ N1, . . . , cl𝑛 ↦→ N𝑛 }

Figure 3.4. Extended grammar of LoCalpar for static semantics.

taking evaluation steps from this initial configuration. This configuration can be constructed automatically

in a straightforward way.

3.2.2.1. Sequential transitions. A subset of the sequential transition rules are given in Figure 3.5.

The rules are close to the original sequential rules, except for some minor differences. For the rule D-

DataConstructor, we need to handle the case where an indirection is assigned to the source symbolic
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[D-DataConstructor]

S; M; K lr Ð⇀v ⇒ S′; M; ⟨r′, i′⟩

where S′ = S ∪ { r′ ↦→ (i′ ↦→ K) }; ⟨r′, i′⟩ = M̂ (lr)

[D-LetLoc-Tag]

S; M; letloc lr = l′r + 1 in e⇒ S; M′; e

where M′ = M ∪ { lr ↦→ ⟨r, i + 1⟩ }; (l′r ↦→ ⟨r, i⟩) ∈ M

[D-LetLoc-After]

S; M; letloc lr = after 𝜏@l0r in e⇒ S; M′; e

where ⟨r, i⟩ = M̂ (l0r); 𝜏 ; ⟨r, i⟩ ; S ⊢ew ⟨r, j⟩

M′ = M ∪ { lr ↦→ ⟨r, j⟩ }

[D-LetLoc-After-NewReg]

S; M; letloc lr = after 𝜏@l0r in e⇒ S′; M′; e

where ⟨r, ivar 𝑥⟩l0 = M̂ (l0r); r′ fresh

S′ = S ∪ { r′ ↦→ ∅ }; M′ = M ∪ { lr ↦→ ⟨r,&(r′, 0)⟩ }

[D-Case]

S; M; case ⟨r, i⟩lr
of [... ,K (

ÐÐÐÐÐ⇀
𝑥 : 𝜏@lr) → e, ...] ⇒ S; M′; e′

where e′ = e[⟨r,Ð⇀𝑤 ⟩
Ð⇀
lr /Ð⇀𝑥 ]

M′ = M ∪ {
Ð⇀
lr
1 ↦→ ⟨r, i + 1⟩, ... ,

Ð⇀
lr
𝑗+1 ↦→ ⟨r,ÐÐ⇀𝑤 𝑗+1⟩ }

Ð⇀𝜏1 ; ⟨r, i + 1⟩ ; S ⊢ew ⟨r,Ð⇀𝑤1⟩
ÐÐ⇀𝜏 𝑗+1; ⟨r,Ð⇀𝑤 𝑗 ⟩ ; S ⊢ew ⟨r,ÐÐ⇀𝑤 𝑗+1⟩

K = S(r) (i); j ∈ { 1, ... , n − 1 }; n = |ÐÐ⇀𝑥 : 𝜏 |

[D-Let-Expr]

S; M; e1 ⇒ S′; M′; e′1 e′1 ≠ v

S; M; let 𝑥 : 𝜏 = e1 in e2 ⇒ S′; M′; let 𝑥 : 𝜏 = e′1 in e2

[D-Let-Val]

S; M; let 𝑥 : 𝜏 = v1 in e2 ⇒ S; M; e2 [v1/𝑥]

Figure 3.5. Dynamic semantics rules (sequential transitions).
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location lr . For this purpose, we use a metafunction M̂ (formally defined in Section 3.2.4) that can deref-

erence indirection pointers when looking up its address in the location map M . With respect to the rule

D-LetLoc-After-NewReg, we now allow the concrete location assigned to the source location l0r to hold

an ivar. The purpose of this relaxation is to allow an expression downstream from a parallelized let bind-

ing to continue evaluating in parallel with the task that is evaluating the let-bound expression. The task

evaluating the after expression continues by using an indirection pointing to the start of a fresh region r′.

The effect is to make ⟨r′, 0⟩ the setting for the allocation pointer for the task. If the source location l0r is

assigned to hold a concrete index i, the rule D-LetLoc-After yields an address by using the the end-witness

judgment.

3.2.2.2. Parallel transitions. We generalize a sequential state to a parallel task T by adding two

more fields: a located type and a concrete location, which together describe the type and location of the

final result allocated by the task. A parallel transition in LoCalpar takes the form of the following rule,

where any number of tasks in a task set T may step together.

T =⇒𝑟𝑝 T
′

In each step, a given task may make a sequential transition, it may fork a new parallel task, it may join

with another parallel task, or it may remain unchanged.

The parallel transition rules are given in Figure 3.6. In these rules, we model parallelism by an inter-

leaving semantics. Any of the tasks that are ready to take a sequential step may make a transition in rule

D-Par-Step. A parallel task can be spawned by the D-Par-Let rule, from which an in-flight let expression

breaks into two tasks. The child task handles the evaluation of the let-bound expression e1, and the parent

task handles the body e2. To represent the future location of the let-bound expression, and to create a data

dependency on it, the rule creates a fresh ivar, which is passed to the body of the let expression. This same

ivar is also the target concrete location of the child task, thereby indicating that it produces this value.

A task can satisfy a data dependency in a rule such as D-Par-Case-Join, where a case expression is

blocked on the value located at ivar 𝑥𝑐 , by joining with the task producing the value. Because each

task has a private copy of the store and location map, the process of joining two tasks involves merging

environments. The merging of the task memories is performed by the metafunctions MergeS and MergeM ,

defined formally in Section 3.2.4. We merge two stores by merging the heaps of all the regions that are

shared in common by the two stores, and then by combining with all regions that are not shared. We merge

two heaps by taking the set of all the heap values at indices that are equal, and all the heap values at indices
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[D-Par-Step]

S; M; e⇒ S′; M′; e′

T1, ... , (𝜏, cl, S; M; e), ... T𝑛 =⇒𝑟𝑝 T1, ... , (𝜏, cl, S′; M′; e′), ... T𝑛

[D-Par-Let-Fork]

T1, ... , (𝜏, cl, S; M; e), ... T𝑛 =⇒𝑟𝑝 T1, ... , (𝜏1, cl′1, S; M; e1), ... T𝑛, (𝜏, cl, S; M2; e′2)
where e = (let 𝑥 : 𝜏1 = e1 in e2); 𝜏1 = 𝜏1@l1r1

𝑥1 fresh; cl′1 = ⟨r1, ivar 𝑥1⟩ ; e′2 = e2 [cl′1/𝑥]

M = { l1r1 ↦→ cl1 } ∪M′; M2 = { l1r1 ↦→ cl′1 } ∪M′

[D-Par-Case-Join]

T1, ... , T𝑐 , ... , T𝑛 =⇒𝑟𝑝 T1, ... , T ′𝑐 , ... T𝑛,

where

T𝑐 = (𝜏𝑐 , cl𝑐 , S𝑐 ; M𝑐 ; e𝑐); e𝑐 = case ⟨r, ivar 𝑥𝑐⟩l𝑐 of
Ð⇀pat

T𝑝 ∈ { T1, ... , T𝑛 } = (𝜏𝑝@l𝑝 r , ⟨r, ivar 𝑥𝑐⟩, S𝑝 ; M𝑝 ; ⟨r, i𝑝⟩)

M3 = MergeM (M𝑝 ,M𝑐); S3 = MergeS(S𝑝 , S𝑐)

e′𝑐 = case ⟨r, i𝑝⟩l𝑝 of
Ð⇀pat [i𝑝/ivar 𝑥𝑐]; T ′𝑐 = (𝜏𝑐 , cl𝑐 , S3; M3; e′𝑐)

[D-Par-DataConstructor-Join]

T1, ... , (𝜏, cl, S; M; e), ... , T𝑛 =⇒𝑟𝑝 T1, ... , T ′, ... , T𝑛
where e = K lr Ð⇀v ; ⟨r, ivar 𝑥j⟩ = Ð⇀vj ; T𝑐 ∈ { T1, ... , T𝑛 }

T𝑐 = (𝜏𝑐@l𝑐 r , ⟨r, ivar 𝑥 𝑗 ⟩, S𝑐 ; M𝑐 ; ⟨r, i𝑐⟩l𝑐 )

M′ = MergeM (M𝑐 ,M); S′ = MergeS(S𝑐 , S)

n = |Ð⇀v |;
Ð⇀
v′ = [Ð⇀v1, ... ,

ÐÐ⇀vj−1, ⟨r, i𝑐⟩l𝑐 ,Ð⇀vj+1, ... ,
Ð⇀v𝑛]

𝜏j = TypeOfField (K, j);

S′′ = LinkFields(S′,M, 𝜏j, ⟨r, i𝑐⟩l𝑐 ) if 𝑗 ≠ 𝑛 else S′

e′ = K lr Ð⇀v′ ; T ′ = (𝜏, cl, S′′; M′; e′)

Figure 3.6. Dynamic semantics rules (parallel transitions).

in only the first and only the second heap. The merging of location maps follows a similar pattern, but is

slightly complicated by its handling of locations that map to ivars. In particular, for any location where one

of the two location maps holds an ivar and the other one holds a concrete index, we assign to the resulting
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location map the concrete index, because the concrete index contains the more recent information. After

merging the environments, all occurrences of ivar 𝑥𝑐 are eliminated in the continuation, and are replaced

by the index i𝑝 , that represents the starting index of the value produced by the task T𝑝 . Join points in

LoCalpar are, in general, deterministic, because they only increase the information held by the parent task.

The rule D-Par-DataConstructor-Join handles the case where a data constructor is blocked on the value

of its 𝑗𝑡ℎ field, and it joins with the task producing that value. It is similar to D-Par-Case-Join, and also

requires merging environments. But depending on the schedule of execution, if the ( 𝑗 + 1)𝑡ℎ field of this

constructor was computed in parallel with the 𝑗𝑡ℎ field, they will both be allocated to separate regions,

due to the way the rule D-LetLoc-After-NewReg works. These fields have to be reconciled to simulate

a single region. For this purpose, we use a metafunction LinkFields —defined formally in Section 3.2.4—

which stitches together these fields by writing an indirection pointing to the start of the region containing

the ( 𝑗 + 1)𝑡ℎ field at an address one past the end of the 𝑗𝑡ℎ field. Thus, when all fields of a data constructor

are synchronized with, all fields allocated to different regions are linked together by indirection pointers,

forming a linked-list.

3.2.3. Type system. Our type system for LoCalpar requires some substantial extensions to the orig-

inal type system given by [65]. These extensions address the need to handle multi-task configurations,

which require a number of new typing environments and rules. Before we present these extensions, we

recall the typing rule for the configuration of a single task, which is mostly unchanged from the original.

Γ ; Σ; C; A; N ⊢ A′; N ′; e : 𝜏

The context for this judgement includes five different environments. First, Γ is a standard typing environ-

ment. Second, Σ is a store-typing environment, mapping materialized symbolic locations to their types.

That is, every location in Σ has been written and contains a value of type Σ(𝑙𝑟 ). Third, C is a constraint

environment, keeping track of how symbolic locations relate to each other. Fourth, A maps each region in

scope to a location, and is used to symbolically track the allocation and incremental construction of data

structures; Finally, N is a nursery of all symbolic locations that have been allocated, but not yet written

to. Both A and N are threaded through the typing rules, also occurring in the output of the judgement, to

the right of the turnstile.

Let us first consider the rule T-DataConstructor given in Figure 3.7. It starts by ensuring that the

tag being written, and all the fields have the correct type. Along with that, the locations of all the fields of

the constructor must also match the expected constraints. That is, the location of the first field should be
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[T-DataConstructor]
TypeOfCon(K) = 𝜏 TypeOfField (K, i) =

Ð⇀
𝜏 ′i

lr ∈ N A(r) =
Ð⇀
l𝑛r if 𝑛 ≠ 0 else lr

C (
Ð⇀
l1r ) = lr + 1 C (

ÐÐ⇀
lj+1r ) = after (

Ð⇀
𝜏 ′j @
Ð⇀
l′j

r )

Γ ; Σ; C; A; N ⊢ A; N ;Ð⇀vi :
ÐÐÐ⇀
𝜏 ′i @lir

Γ ; Σ; C; A; N ⊢ A′; N ′; K lr Ð⇀v : 𝜏@lr

where A′ = A ∪ { r ↦→ lr }; N ′ = N − { lr }

n = |Ð⇀v |; i ∈ I = { 1, . . . , n }; j ∈ I − { n }

Figure 3.7. A copy of the typing rule for LoCal data constructor given in [65].

[T-DataConstructor-Ivars]
TypeOfCon(K) = 𝜏 TypeOfField (K, i) =

Ð⇀
𝜏 ′i

lr ∈ N A(r) =
Ð⇀
l𝑛r if 𝑛 ≠ 0 else lr

C (
Ð⇀
l1r ) = lr + 1 C (

ÐÐ⇀
lj+1r ) = after (

Ð⇀
𝜏 ′j @
Ð⇀
l′j

r )

∃k∈I .⟨r, ivar 𝑥𝑘⟩ = Ð⇀v𝑘 Γ ; Σ; C; A; N ⊢ A; N ;Ð⇀vi :
ÐÐÐ⇀
𝜏 ′i @lir

Γ ; Σ; C; A; N ⊢ A′; N ′; K lr Ð⇀v : 𝜏@lr

where n = |Ð⇀v |; i ∈ I = { 1, . . . , n }; j ∈ I − { n }

Figure 3.8. Additional typing rule for type checking an in-flight data constructor.

[T-Task]
Γ ; Σ; C; A; N ⊢ A′; N ′; e : 𝜏

Γ ; Σ; C; A; N ⊢𝑡𝑎𝑠𝑘 A′; N ′; (𝜏, cl, S; M; e)

[T-Taskset-Empty]

Γ; Σ;C;A;N ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A;N; ∅

[T-Taskset]
(𝜏, cl, S; M; e) = T𝑖 Γ = Γ(cl) Σ = Σ(cl) C = C(cl) A = A(cl) N = N(cl)

Γ ; Σ; C; A; N ⊢𝑡𝑎𝑠𝑘 A′; N ′; T𝑖 : 𝜏 A′ = A ∪ { cl ↦→ A′ } N′ = N ∪ { cl ↦→ N ′ }

Γ; Σ;C;A′;N′ ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A′′;N′′; { T1, . . . , T𝑛 }

Γ; Σ;C;A;N ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A′′;N′′; { T1, . . . , T𝑖 , . . . , T𝑛 }

Figure 3.9. Typing rules for a parallel task T , and a set of parallel tasks T.
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immediately after the constructor tag, and there should be appropriate after constraints for other fields in

the location constraint environment. To indicate that the tag has been written, the allocation environment

is extended and the location l is removed from the nursery to prevent multiple writes to a location. If

any fields of the constructor have evaluated to an ivar, however, the tag is not written to the store (D-

Par-DataConstructor-Join). The rule T-DataConstructor-Ivars handles this case. It does not extend the

allocation environment, and also keeps the location l in the nursery, so that a constructor tag may be

written at this location in the future, once this task has synchronized with those allocating the fields. This

additional typing rule is necessary to satisfy a requirement of the Top Level Preservation lemma (B.2.4).

To generalize our typing rules to handle multi-task configurations, we introduce new environments

for variables Γ, store typing Σ, allocation constraints C, allocation pointers A, and nurseries N. These

environments—given in Figure 3.4—extend their counterparts in the sequential LoCal type system, and are

needed to track state on a per-task basis. The precise typing rules to type check a parallel task T , and a

set of parallel tasks T are given in the Figure 3.9. A parallel task T is well-typed if its target expression

e is well-typed, using the original LoCal typing rules, and a task set T is well-typed if all tasks in it are

well-typed.

3.2.4. Definitions of metafunctions. In the following, we define various metafunctions used in the

formalism.

3.2.4.1. Merging task memories. These metafunctions are given in Figure 3.10. We merge two

stores by merging the heaps of all the regions that are shared in common by the two stores, and then by

combining with all regions that are not shared. We merge two heaps by taking the set of the all the heap

values at indices that are equal, and all the heap values at indices in only the first and only the second

heap. The merging of location maps follows a similar pattern, but is slightly complicated by its handling

of locations that map to ivars. In particular, for any location where one of the two location maps holds an

ivar and the other one holds a concrete index, we assign to the resulting location map the concrete index,

because the concrete index contains the more recent information.

3.2.4.2. End-Witness judgement. The end-witness rule is given in Figure 3.11. This rule provides a

naive computational interpretation of the process for finding the index one past the end of a given concrete

location, with its given type. It is mostly the same as the one given for the original, sequential LoCal, but

includes an additional case for handling indirection pointers. To compute the end-witness of an indirection
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3. RECONCILING PARALLELISM AND SERIALIZATION

MergeS(S1, S2) = { r ↦→ MergeH (h1, h2) | (r ↦→ h1) ∈ S1, (r ↦→ h2) ∈ S2 }

∪ { r ↦→ h | (r ↦→ h) ∈ S1, r ∉ 𝑑𝑜𝑚(S2) }

∪ { r ↦→ h | (r ↦→ h) ∈ S2, r ∉ 𝑑𝑜𝑚(S1) }

MergeH (h1, h2) = { i1 ↦→ hv | (i1 ↦→ hv) ∈ h1, (i2 ↦→ hv) ∈ h2, i1 = i2 }

∪ { i ↦→ hv | (i ↦→ hv) ∈ h1, i ∉ { i′ |i′ ∈ 𝑑𝑜𝑚(h2) } }

∪ { i ↦→ hv | (i ↦→ hv) ∈ h2, i ∉ { i′ |i′ ∈ 𝑑𝑜𝑚(h1) } }

MergeM (M1,M2) = { lr ↦→ ⟨r, i1⟩ | (lr ↦→ ⟨r, i1⟩) ∈ M1, (lr ↦→ ⟨r, i2⟩) ∈ M2, i1 = i2 }

∪ { lr ↦→ cl | (lr ↦→ cl) ∈ M1, lr ∉ M2 }

∪ { lr ↦→ cl | lr ∉ M1, (lr ↦→ cl) ∈ M2 }

∪ { lr ↦→ ⟨r, j⟩ | (lr ↦→ ⟨r, ivar 𝑥⟩) ∈ M1, (lr ↦→ ⟨r, j⟩) ∈ M2 }

∪ { lr ↦→ ⟨r, j⟩ | (lr ↦→ ⟨r, j⟩) ∈ M1, (lr ↦→ ⟨r, ivar 𝑥⟩) ∈ M2 }

Figure 3.10. Metafunctions for merging task memories.

Case (A). 𝜏c ; ⟨r, i𝑠⟩ ; S ⊢ew ⟨r, i𝑒⟩ :

(1) S(r) (i𝑠) = K ′ such that

data 𝜏c =
ÐÐÐÐ⇀
K1
Ð⇀𝜏 1 | . . . | K ′ Ð⇀𝜏 ′ | . . . |

ÐÐÐÐÐ⇀
K𝑚
Ð⇀𝜏 𝑚

(2) Ð⇀𝑤0 = i𝑠 + 1

(3)
Ð⇀
𝜏 ′1 ; ⟨r,Ð⇀𝑤0⟩ ; S ⊢ew ⟨r,Ð⇀𝑤1⟩∧
ÐÐ⇀
𝜏 ′𝑗+1; ⟨r,Ð⇀𝑤 𝑗 ⟩ ; S ⊢ew ⟨r,ÐÐ⇀𝑤 𝑗+1⟩

where j ∈ { 1, . . . , 𝑛 − 1 };𝑛 = |Ð⇀𝜏 ′ |

(4) i𝑒 = Ð⇀𝑤𝑛

Case (B). 𝜏c ; ⟨r, i𝑠⟩ ; S ⊢ew ⟨r′, i′𝑒⟩ :

(1) S(r) (i𝑠) = &(r′, i′𝑠)

(2) 𝜏c ; ⟨r′, i′𝑠⟩ ; S ⊢ew ⟨r′, i′𝑒⟩

Figure 3.11. The end-witness rule.

pointer, the judgement first reads the address ⟨r′, i′𝑠⟩ which is written at ⟨r, i𝑠⟩ , and returns the end-witness

of the value allocated at ⟨r′, i′𝑠⟩ .
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3.2.4.3. Linking fields of a data constructor. Given a store S, a location map M , and the addresses

of the 𝑛𝑡ℎ and (𝑛 + 1)𝑡ℎ fields of a data constructor K , this metafunction conditionally establishes a link

between these fields. If the location map M maps the symbolic location of the (𝑛 + 1)𝑡ℎ field, l2r1 , to an

indirection pointer &(r2, i2), it means that these fields were computed in parallel with each other, and thus

would have been allocated into separate regions. To link such fields, we use the end-witness judgement

to compute an address ⟨r1, i𝑒⟩ which is one past the end of the 𝑛𝑡ℎ field, and we then write an indirection

pointer pointing to the starting address of the (𝑛 + 1)𝑡ℎ field at ⟨r1, i𝑒⟩ . This establishes the desired link.

If the fields have been allocated into the same region, we do not have to link them, and the store S is

returned unchanged in this case. A precondition for using this metafunction is that the 𝑛𝑡ℎ field must be

fully allocated. The layout of the heap corresponding to different schedules after establishing links between

the fields is shown in Figure 3.14.

LinkFields(S,M, 𝜏1, ⟨r1, i1⟩l1, cll2) = S ∪ { r1 ↦→ (i𝑒 ↦→ &(r2, i2)) }

where (l2r1 ↦→ ⟨r1,&(r2, i2)⟩) ∈ M and 𝜏1; ⟨r1, i1⟩ ; S ⊢ew ⟨r1, i𝑒⟩

LinkFields(S,M, 𝜏1, ⟨r1, i1⟩l1, cll2) = S

where (l2r1 ↦→ ⟨r1,&(r2, i2)⟩) ∉ M

Figure 3.12. Metafunction for linking fields of a data constructor.

3.2.4.4. Derefrencing indirections in M. If a location l maps to an indirection pointer &(r′, i) in

M , it is derefrenced by returning the address ⟨r′, i⟩ . Otherwise, the mapping contained in M is returned

unchanged.

M̂ (l) = ⟨r, j⋄⟩ where
(l ↦→ cl) ∈ M (l)

⟨r, j⋄⟩ = Deref (M, cl)

Deref (M, ⟨r,&(r′, i)⟩) = ⟨r′, i⟩

Deref (M, ⟨r, i⟩) = ⟨r, i⟩

Deref (M, ⟨r, ivar 𝑥⟩) = ⟨r, ivar 𝑥⟩

Figure 3.13. Derefrencing indirections in M .
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3.2.4.5. Other global environments and metafunctions.

• 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑓 ): An environment that maps a function 𝑓 to its definition fd.

• 𝐹𝑟𝑒𝑠ℎ𝑒𝑛(fd): A metafunction that freshens all bound variables in function definition fd and re-

turns the resulting function definition.

• TypeOfCon(K) : An environment that maps a data constructor to its type.

• TypeOfField (K, 𝑖): A metafunction that returns the type of the i’th field of data constructor K .

• ArgTysOfConstructor (K): An environment that maps a data constructor to its field types.

• MaxIdx (r, S) = max({ −1 } ∪ { j | (r ↦→ (j ↦→ K)) ∈ S }): A metafunction that returns the highest

allocated address in the store, or -1 if nothing has been allocated yet.

• 𝐼𝑠𝑉𝑎𝑙 (e): A metafunction that checks if an expression is a value or not.

• 𝐼𝑣𝑎𝑟𝑠 (e): A metafunction that yields the set of ivars that occur in the term e.

• 𝐻𝑎𝑠𝑆𝑖𝑛𝑔𝑙𝑒𝑊𝑟𝑖𝑡𝑒𝑟 (T, 𝜏, ivar 𝑥) = |{ (𝜏, ⟨r, ivar 𝑥⟩l, S; M; e) |

∃S,M,e .(𝜏, ⟨r, ivar 𝑥⟩l, S; M; e) ∈ T }| = 1

A metafunction that checks if there is exactly one task T ∈ T which can supply a value of type 𝜏

for ivar 𝑥 .

• 𝐺𝑒𝑡𝑆𝑖𝑛𝑔𝑙𝑒𝑊𝑟𝑖𝑡𝑒𝑟 (T, 𝜏, ivar 𝑥): A metafunction that returns a unique task T ∈ T which can

supply a value of type 𝜏 for ivar 𝑥 if it exists, or returns -1 otherwise.

• 𝑇𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ((𝜏, cl, S; M; e)) = 𝐼𝑠𝑉𝑎𝑙 (e): A metafunction that checks whether a task has evalu-

ated to a value.

• 𝑑𝑒𝑒𝑝𝑆𝑢𝑝𝑒𝑟𝑠𝑒𝑡𝐸𝑞𝑆 (Σ1,Σ2) = Σ1 ⊇ Σ2 ∨ ((cl ↦→ Σ2) ∈ Σ2 ⇒ (cl ↦→ Σ1) ∈ Σ1 ∧ Σ1 ⊇ Σ2): A

metafunction that checks if the first argument is a deep superset of the second. In other words,

the first argument can contain a mapping (cl ↦→ Σ) which is not present in the second one and

thus be a super set at the outer level. Or a specific mapping within the first argument can be a

super set of the corresponding mapping within the second, and be a super set at an inner level.

Note that it uses an inclusive-or, and both these conditions may be simultaneously true.

• 𝑑𝑒𝑒𝑝𝑆𝑢𝑝𝑒𝑟𝑠𝑒𝑡𝐸𝑞𝐶 (C1,C2): A metafunction identical to 𝑑𝑒𝑒𝑝𝑆𝑢𝑝𝑒𝑟𝑠𝑒𝑡𝐸𝑞𝑆 , but for C.

• 𝑎 ⊕ 𝑏 = (𝑎 ∧ ¬𝑏) ∨ (¬𝑎 ∧ 𝑏): A metafunction for the exclusive-or logical operator.

3.2.5. Well-formedness Judgments. In this section we present certain well-formedness criteria for

various elements of the formal model. Some of these are similar to the corresponding judgments for se-

quential LoCal given in [65], but they are extended to handle ivars, and indirections in the location map
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and store. We give an additional judgement to check the well-formedness of the set of tasks executing

in a parallel machine. Because there are many requirements specified inside the various well-formedness

judgments, we introduce notation for referring to requirements individually. For example, the notation

WF 3.2.5.4;2 refers to the judgement A; N ⊢𝑤𝑓𝑐𝑎 M; S, specified in Section 3.2.5.4, and in that judgement,

rule number 2.

3.2.5.1. Well-formedness of a task set.

Judgement form. Σ;C;A;N ⊢𝑤𝑓𝑡𝑎𝑠𝑘𝑠 T

The following well-formedness rule applies to a set of tasks executing in the parallel machine. This

judgment specifies two new invariants that must hold for all tasks T ∈ T. The first enforces that all ivars

get filled with an appropriate value. In particular, if an expression being evaluated by a task references

an ivar, then there must be exactly one other task in the task set which supplies a well-typed value for it.

Rule 1 specifies that for all ivars referenced in an expression being computed by a certain task, there is a

corresponding ivar in the location map, and there is exactly one other task in the task set which supplies a

well-typed value for that ivar. The second invariant consists of the well-formedness judgment that verifies

certain properties hold for each store of a given task. Rule 2 references a separate judgement for well-

formedness of the store with respect to the location map of a parallel task. This judgment generalizes a

similar rule used in the original proof by its use of the overall task set T.

Definition.

∀(𝜏, cl, S; M; e) ∈ T.

Σ = Σ(cl); C = C(cl); A = A(cl); N = N(cl)

(1) ⟨r, ivar 𝑥⟩l ∈ 𝐼𝑣𝑎𝑟𝑠 (e) ∧ ∅; Σ; C; A; N ⊢ A′; N ′; ⟨r, ivar 𝑥⟩l : 𝜏 ′ ⇒

(lr ↦→ ⟨r, ivar 𝑥⟩l) ∈ M ∧ 𝐻𝑎𝑠𝑆𝑖𝑛𝑔𝑙𝑒𝑊𝑟𝑖𝑡𝑒𝑟 (T, 𝜏 ′, ivar 𝑥)

(2) Σ; C; A; N ;T ⊢𝑤𝑓 M; S

3.2.5.2. Well-formedness of a store.

Judgement form. Σ; C; A; N ;T ⊢𝑤𝑓 M; S

The well-formedness judgement for a parallel task’s store extends the judgment of the sequential Lo-

Cal typing system to establish a global criterion for well-formedness, checking in particular that parts of

regions that are distributed across each task-private store, given by M; S, are well-formed. This judgement

is one of the most challenging parts of our extension, because it must be strong enough to ensure safe

merging of stores when tasks meet at join points. Like in sequential LoCal, it specifies three categories of

invariants.

42



3. RECONCILING PARALLELISM AND SERIALIZATION

The first category enforces that allocations occurring across the task-private stores are accounted for.

In particular, for each symbolic location in the store-typing environment, (lr ↦→ 𝜏) ∈ Σ, a value must be

allocated to the appropriate store. There are two possible ways in which this allocation may occur: (1)

sequentially, in the current task, or (2) in parallel, in a different task. In the sequential case, lr ’s address

in the location map M must be a concrete index, and it must have an end-witness. This technical point

ensures that the store never contains partially allocated values. In the parallel case, lr ’s address in M must

be an ivar, and there must be exactly one other task, T𝑜𝑡ℎ ∈ T, that supplies a well-typed value for it.

Moreover, lr ’s address in T𝑜𝑡ℎ’s location map must be a concrete index, and if T𝑜𝑡ℎ has finished evaluating,

this value must have an end-witness. This property ensures that when these tasks merge, the resulting

store has complete values allocated at the expected addresses and the expected types.

The second category enforces that allocations occur in the sequence specified by the constraint envi-

ronment C. Rules 2 and 3 reference the judgments for well-formedness concerning in-flight constructor

applications (Section 3.2.5.3) and correct allocation in regions (Section 3.2.5.4), respectively. In particular,

if there is some location l in the domain of C, then the location map and store must have the expected

allocations at the expected types. The most interesting rule here is that for the after constraint, since

it involves potential parallel allocations. For instance, if (l ↦→ (after 𝜏@l′)) ∈ C, then the values at

locations l and l′ may be allocated sequentially, in the same task, or in parallel, in different tasks. The

sequential case is straightforward. For the parallel case, there are two possibilities — (1) the task allocating

the value at location l′ may be still in-flight, or (2) it may have already synchronized with the current

(parent) task. In the first case, we ensure the presence of an appropriate indirection in the location map

(l ↦→ ⟨r,&(rfresh, 0)⟩) and of a fresh region in the store (rfresh ∈ S). Otherwise, we ensure that a link between

the values at locations l′ and l exists, which is accomplished by the metafunction LinkFields.

The final category enforces that each location is written to only once. This is done by checking that

the nursery and store-typing environments reference no common locations (𝑑𝑜𝑚(Σ) ∩ N = ∅), which is

a way of reflecting that each location is either in the process of being constructed and in the nursery, or

allocated and in the store-typing environment, but never both.

Definition.

(1) (lr ↦→ 𝜏) ∈ Σ ⇒

(⟨r, i1⟩ = M̂ (lr) ∧ 𝜏 ; ⟨r, i1⟩ ; S ⊢ew ⟨r, i2⟩) ⊕

(⟨r, ivar 𝑥⟩ = M̂ (lr) ∧

∃S′,M′,e′ .(𝜏, ⟨r, ivar 𝑥⟩, S′; M′; e′) = 𝐺𝑒𝑡𝑆𝑖𝑛𝑔𝑙𝑒𝑊𝑟𝑖𝑡𝑒𝑟 (T, 𝜏, ivar 𝑥) ∧
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⟨r, i1⟩ = M̂′(lr) ∧

(𝐼𝑠𝑉𝑎𝑙 (e′) ⇒ 𝜏 ; ⟨r, i1⟩ ; S′ ⊢ew ⟨r, i2⟩))

(2) C ⊢𝑤𝑓𝑐𝑓 𝑐 M; S

(3) A; N ⊢𝑤𝑓𝑐𝑎 M; S

(4) 𝑑𝑜𝑚(Σ) ∩ N = ∅

3.2.5.3. Well-formedness of constructor application.

Judgement form. C ⊢𝑤𝑓𝑐𝑓 𝑐 M; S

The well-formedness judgement for constructor application specifies the various constraints that are

necessary for ensuring correct formation of constructors, dealing with constructor application being an

incremental process that spans multiple LoCalpar instructions. Rule 1 specifies that, if a location corre-

sponding to the first address in a region is in the constraint environment, then there is a corresponding

entry for that location in the location map. Rule 2 specifies that, if a location corresponding to the address

one past a constructor tag is in the constraint environment, then there are corresponding locations for the

address of the tag and the address after it in the location map. Rule 3 specifies that, if a location correspond-

ing to the address one past after a fully allocated constructor application is in the constraint environment,

then there are corresponding locations for the address of the start of that constructor application, and for

the address one past the constructor application in the location map. There are two possible ways in which

the values at locations l′r and lr may be allocated — (1) sequentially, by a single task, and thus in a single

region, or (2) in parallel with each other, by separate tasks, and thus in separate regions. The first disjunct

holds when the values are allocated sequentially by a single task. In this case, the starting address of the

constructor application is a concrete index, and an end-witness for it also exists. The address one past the

constructor application is this end-witness. The second disjunct holds when the values are allocated in

parallel by separate tasks. In this case, the location map M and store S belong to the task that allocates

the value at location lr . The starting address of the constructor application is an ivar, and the address one

past the constructor application is an indirection pointer pointing to a separate region which has been

allocated in the store. The third disjunct holds when the values are allocated in parallel by separate tasks,

but after those tasks have synchronized with each other, and their memories merged (3.2.4.1). The merge

resets the starting address of the constructor application back to a concrete index, and an end-witness for

it now exists. The store contains an indirection pointer at this end-witness which points to the start of the

region that contains the value at location lr . In other words, a link between the values at locations l′r and
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lr exists. The address one past the constructor application is the corresponding indirection pointer. Note

that these disjuncts are connected with an exclusive-or, and only one of them can hold at a time.

Definition.

(1) (lr ↦→ start r) ∈ C ⇒ (lr ↦→ ⟨r, 0⟩) ∈ M

(2) lr ↦→ (l′r + 1)) ∈ C ⇒ ⟨r, i𝑙 ⟩ = M̂ (l′r) ∧ ⟨r, i𝑙 + 1⟩ = M̂ (lr)

(3) (lr ↦→ after 𝜏@l′r) ∈ C ⇒

(⟨r, i1⟩ = M̂ (l′r) ∧ 𝜏 ; ⟨r, i1⟩ ; S ⊢ew ⟨r, i2⟩ ∧ ⟨r, i2⟩ = M̂ (lr)) ⊕

(⟨r, ivar 𝑥1⟩ = M̂ (l′r) ∧ (lr ↦→ ⟨r,&(r2, 0)⟩) ∈ M ∧ { r2 ↦→ h } ∈ S) ⊕

(⟨r, i1⟩ = M̂ (l′r) ∧ 𝜏 ; ⟨r, i1⟩ ; S ⊢ew ⟨r, i2⟩ ∧ (lr ↦→ ⟨r,&(r2, 0)⟩) ∈ M ∧ S(r) (i2) = &(r2, 0))

3.2.5.4. Well-formedness concerning allocation.

Judgement form. A; N ⊢𝑤𝑓𝑐𝑎 M; S

The well-formedness judgement for safe allocation specifies the various properties of the location map

and store that enable continued safe allocation, avoiding in particular overwriting cells, which could, if

possible, invalidate overall type-safety. Rule 1 requires that, if a location lr is in both the allocation and

nursery environments, i.e., that address represents an in-flight constructor application, then there is a

corresponding location in the location map and the address of that location is the highest address in the

store. Alternatively, the value at location lr is allocated in parallel by a separate task, in a separate region,

and its address is the corresponding indirection pointer. Rule 2 requires that, if there is an address in the

allocation environment and that address is fully allocated, then the address of that location is the highest

address in the store. Rule 3 requires that, if there is an address in the nursery, then there is a corresponding

location in the location map, but nothing at the corresponding address in the store. Finally, Rule 4 requires

that, if there is a region that has been created but for which nothing has yet been allocated, then there can

be no addresses for that region in the store.

Definition.

(1) ((r ↦→ lr) ∈ A ∧ lr ∈ N ) ⇒

((lr ↦→ ⟨r, i⟩) ∈ M ∧ i > MaxIdx (r, S)) ⊕ (lr ↦→ &(r2, i2)) ∈ M

(2) ((r ↦→ lr) ∈ A ∧ ⟨r, i𝑠⟩ = M̂ (lr) ∧ lr ∉ N ∧ 𝜏 ; ⟨r, i𝑠⟩ ; S ⊢ew ⟨r, i𝑒⟩) ⇒ i𝑒 > MaxIdx (r, S)

(3) lr ∈ N ⇒ ⟨r, i⟩ = M̂ (lr) ∧ (r ↦→ (i ↦→ K)) ∉ S

(4) (r ↦→ ∅) ∈ A⇒ (r ↦→ ∅) ∈ S
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3.2.6. Type safety. Compared to the original type-safety result proved for single-task LoCal, ours

generalizes to parallel evaluation by requiring that, for any given multi-task configuration, either the pro-

gram has fully evaluated or at least one task can take a step. As usual, we prove this theorem by showing

progress and preservation. The main complication relates to the property that parts of the overall store

are now spread across the individual stores of the tasks, whereas in the original proof there is only one

store. In particular, our proof must establish that the store of each task remains well formed, even while

that task waits on a data dependency, and moreover after the task joins with another task and their stores

are merged. The complete proof is available in Appendix B.2.

With the well-formedness and typing judgments in hand, we can now state the type-safety theorem,

shown below. This theorem states that, if a given task set T is well typed and its overall store is well formed,

and if T makes a transition to some task set T′ in 𝑛 steps, then either all tasks in T′ are fully evaluated or

T′ can take a step to some task set T′′.

Theorem 3.2.1 (Type Safety).

If ∅; Σ;C;A;N ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A′;N′;T ∧ Σ;C;A;N ⊢𝑤𝑓𝑡𝑎𝑠𝑘𝑠 T

and T =⇒𝑛
𝑟𝑝 T

′

then, either ∀T ∈ T′. 𝑇𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (T )

or ∃ T′′. T′ =⇒𝑟𝑝 T
′′.

3.2.7. Controlling fragmentation. A consequence of LoCalpar introducing fresh regions is that the

schedule of evaluation dictates the way a value is laid out on the heap, as shown in Figure 3.14. Every

choice to parallelize an intra-region allocation implies the creation of a new region and a new indirec-

tion, thereby introducing fragmentation. Thus, in addition to the usual task-scheduling overheads, in our

system, a schedule that parallelizes too many allocations also leads to fragmentation. Conversely, effort

at amortizing the overhead of parallelism simultaneously amortizes the overhead of indirections and re-

gion fragmentation. We return to this topic and address fragmentation along with parallelism granularity

management in Section 3.3.1.
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Figure 3.14. The heap layout for a data constructor if: (a) all fields are allocated sequen-

tially, (b) only the second and third fields are allocated in parallel with each other, and (c)

all fields are allocated in parallel.

3.3. Implementation

Gibbon is a whole-program1 micropass compiler that compiles a polymorphic, higher-order subset of

(strict) Haskell2. The Gibbon front-end uses standard whole-program compilation and monomorphization

techniques [18] to lower input programs into a first-order, monomorphic representation. On this repre-

sentation, Gibbon performs location inference to convert it into a LoCal program, which has region and

location annotations. Then a big middle section of the compiler is a series of LoCal⇒LoCal compiler passes

that perform various transformations. Finally, it generates C code.

Our parallelism extension operates in the middle section, with minor additions to the backend code

generator and the runtime system. We add a collection of LoCal⇒LoCal compiler passes that transform

the program so that reads and allocations can run in parallel. At run time, we make use of the Intel
1Gibbon’s automatic selection of data representation works best if it can see the whole program, much like the data-

representation optimizations in MLton. One way to get around this issue would be to make the programmer responsible for

choosing the representation, by using appropriate annotations in datatype definitions. Another option is to conservatively insert

random-access information in all datatypes that flow into code within other compilation units. Our current implementation does

not offer these options, and only supports whole program compilation.
2Note that we are not the first to propose a strict variant of Haskell, not only do many of its cousins like Idris take a strict

approach, but GHC itself supports a module-level strict mode.
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Cilk Plus language extension [14] (and its work-stealing scheduler) to realize parallel execution. Our

implementation closely follows the formal model described in Section 3.2.2, but with explicit parallelism

annotations.

3.3.1. Granularity control. Before going further into the details of what we implemented, we first

explain our choices in what we do and do not implement. As we saw in Figure 2.1a, we use manual

annotations for the programmer to mark parallelism opportunities. This is the norm in both current and

past parallel programming practice: from MultiLisp [29] to OpenMP [43], Cilk [14], Java fork-join [36], etc.

Recall also that with a purely functional source language, parallel-tuple annotations change performance

only, not program semantics, so a programmer need not worry about safety when inserting annotations3.

Task granularity thresholds can be fine-tuned by using the same reasoning as in other parallel systems —

switch to sequential for small problem sizes. But there’s also the issue of fragmentation (Section 3.2.7), i.e.

amortizing the overhead of pointers in the representation as well as parallel tasks in the control flow. One

might wonder how these interact.

3.3.1.1. How to optimize granularity in Gibbon? Relatively small chunks of sequential data can

effectively amortize the cost of creating regions and indirections. For instance, serializing just the bottom

two levels in our binary tree examples eliminates 75% of pointers and ensures pointers use only 11% of

memory. The task size to amortize parallel scheduling overheads, on the other hand, is usually much larger.

Therefore, it’s best the Parallel Gibbon programmer thinks about parallelism granularity exclusively, and

the data representation can comfortably follow from that. In other words, a manual (or automatic) solution

to task granularity, also gives “for free”, an efficient, mostly-serialized data representation with amortized

indirections.

3.3.1.2. Why not automatic granularity? Automatic task-parallel granularity control is an active

research area [4, 3]. Combining Parallel Gibbon’s automatic control over data representation, together with

automatic granularity control, is a promising avenue for future work. This goes doubly so if approaches

like Heartbeat scheduling [4] mature to the point of offering robust backends and runtime systems that

compilers like Parallel Gibbon may target, and very recent work offers a step in that direction [49].

Here, however, it would be confounding to address automating granularity simultaneously with com-

pacting data representation and assigning regions. In our experiments (Section 3.4), we hold task gran-

ularity constant across different implementations of the same benchmarks, focusing only on the impact
3This same property holds for inserting parallel annotations in pure GHC Haskell code, which has been used to modest

benefit in past experimental work [30], but is not commonplace practice.
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of each compiler’s code generation and data representation choices. Parallel Gibbon, as well as all of its

competitors, use explicit parallelism annotations, and schedule the same set of tasks at runtime for the

same program inputs, unless mentioned otherwise.

3.3.2. Desugaring parallel tuples. As shown in Figure 2.1a, in the front-end language, we use the

standard parallel tuples to express parallelism, like other eager, parallel functional languages [50, 67]. A

parallel tuple (e1 ∥ e2) marks the expressions e1 and e2 to evaluate in parallel with each other. To more

closely match Cilk, we desugar these parallel tuples into a spawn/sync representation in the compiler IR:

let x = spawn e1 in

let y = e2 in

let _ = sync in

(x,y)

Using this representation simplifies the subsequent conversion to LoCal, in which additional steps like

allocating regions or binding locations may be required before getting to e1 or e2. Generating the cor-

responding letregion/letloc bindings, such that they have the correct scope, is easier with a spawn/sync

representation. Also, we preserve these parallelism annotations in the LoCal code we generate. In contrast

with the formal model (with implicit parallelism, Section 3.2), let y = e2 is always sequential, whereas

let y = spawn e2 essentially corresponds to a potentially parallel let binding, though the decision is ulti-

mately dynamic.

We do not support first-class futures, or tasks that communicate through channels or other mutable

data structures, and thus the task-parallelism opportunities available in Parallel Gibbon remain effectively

series-parallel. But this is sufficiently expressive for writing a large number of parallel algorithms. Note

that the formal model can express some local, non-escaping futures that are not strictly series-parallel by

using parallel lets that are forced out of order. This pattern of parallelism does not provide much additional

expressive power over that provided by parallel tuples, so we do not give up much by not exposing this

capability in the front-end language.

3.3.3. Indirection pointers. In the implementation, we need a runtime representation of optional

pointers to include in the data that corresponds to the indirections in the semantics (Section 3.2.1). For-

tunately, in the Gibbon compiler there is already a pointer mechanism that is sufficient for our pur-

poses. This exists because of how Gibbon’s regions grow—rather than copying data into a larger buffer,

Gibbon accumulates a linked list of contiguous chunks, doubling the size on each extension. The last
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filled cell in a chunk is an indirection into the next chunk. Indirections also enable Gibbon to allocate

a value that is shared between multiple locations (within the same region or across regions) without re-

quiring a full copy, which is crucial for ensuring asymptotic complexity conservation of programs. Vari-

able aliases indicate this sharing to the compiler. For example, the aliased variable x in the expression

(let x = mkBigExpr in Plus x x) indicates that a single, shared value must be allocated for the left and right

subtrees of Plus. Gibbon rewrites this expression to (let x = mkBigExpr in Plus x (IndPtr x)), where the

right subtree is an indirection pointing to the data allocated for the left. Similarly, the identity function

(id x = x) becomes (id x = IndPtr x). The shared scalar values such as numbers and booleans are always

copied, because it is more efficient to do so. In Parallel Gibbon, we reuse this indirection pointer mechanism

to implement intra-region parallel allocations.

3.3.4. Parallel reads. Using static analysis, Gibbon can infer if a dataype requires offsets, and it can

transform the program to add offsets to datatypes that need them. In sequential programs, these are used

to preserve asymptotic complexity of certain functions. In Parallel Gibbon, we use these offsets to enable

parallel reads. We update that static analysis, and add offsets if a program performs parallel reads, i.e. via

a clause in a case expression that accesses a data-constructor’s fields in parallel.

3.3.5. Parallel allocations. The implementation of intra-region parallel allocations closely follows

the design described in Section 3.2. A program transformation pass generates code that allocates fresh

regions and writes indirection pointers at appropriate places. But the metafunctions MergeS and MergeM

which merge task memories at join points have a different run time behavior compared to their formal

definition. The implementation does not have a direct notion of a store. At run time, a region variable

r is only a structure containing a pointer to the start of a memory buffer and some metadata necessary

for garbage collection. Two memory buffers are merged (linked) simply by writing a single indirection

pointer in one of them. This operation is relatively cheap compared to the set union used in the formal

definition. Similarly, the implementation does not have a direct notion of a location map, and therefore

there is no run time operation equivalent to MergeM . At run time, all location variables become absolute

pointers into the heap.

But there still exists an issue with fragmentation. With granularity control — in the form of judicious

use of parallel tuples — we can restrict excessive creation of fresh regions, but the number of regions

created will still always be equal to the number of parallel tasks spawned by the program. This can still

cause fragmentation because all spawned tasks might not actually run in parallel.
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The key insight is to make the number of fresh region allocations equal to the number of steals, not

spawns. That is, because our implementation uses a work-stealing scheduler, but the general idea applies

to other schedulers as well: fragmentation should be proportional to parallelism in the dynamic schedule,

not the static potential for parallelism. Our implementation creates fresh regions for intra-region parallel

allocations only if they really run in parallel. We accomplish this by using the Cilk Plus API to implement a

hook to detect when steals occur. Before reaching a parallel fork point (spawn), the runtime system stores

the ID of the worker executing the current code. Next, the corresponding ID is immediately fetched in the

continuation of the fork point. If the IDs match, it indicates that a steal did not occur. This optimization

enables parallel allocations with minimal fragmentation.

3.3.6. Parallel arrays. Programs need arrays as well as trees. We extend Gibbon with array prim-

itives such as alloc, length, nth, slice, and inplaceUpdate, and use them to build a small library of parallel

array operations with good work and span bounds. The ability to safely mutate an array in-place allows

us to implement optimizations that go beyond what is commonly allowed in a purely functional language.

This is enforced using the new Linear Haskell extensions [9], for example, the signature of an 𝑂 (1) array

mutation is:

inplaceUpdate :: Int → a → Array a ⊸ Array a

Using these primitive operations, collective operations on arrays are implemented as recursive divide-

and-conquer functions in Parallel Gibbon that use parallelism annotations4. For example, our parallel map

first allocates an array to store the output, and then updates it in parallel with inplaceUpdate. But all such

potentially-racy operations are hidden behind a pure interface. Also, an Array in Parallel Gibbon can only

store primitive values such as numbers, booleans, and n-ary tuples of such values. In the future, we plan

to explore ways to support data-parallel operations on serialized algebraic data.

3.4. Evaluation

In this section, we evaluate our implementation using a variety of benchmarks from the existing lit-

erature, as well as a new compiler benchmark. To measure the latent overheads of adding parallelism,

we compare our single-thread performance against the original, sequential LoCal, as implemented by the

Gibbon compiler. Sequential Gibbon is also a good baseline for performing speedup calculations since
4These combinators offer variants to explicitly control sequential chunk size, or to use the common heuristic of splitting into

a number of tasks that is a multiple of the number of cores (provided as a global constant).
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its programs operate on serialized heaps, and as shown in prior work, are significantly faster than their

pointer-based counterparts. Note that prior work [66] compared sequential constant factor performance

against a range of compilers including GCC and Java. Since Sequential Gibbon outperformed those com-

pilers in sequential tree-traversal workloads, we focus here on comparing against Sequential Gibbon for

sequential performance.

We also compare the performance of our implementation to other languages and systems that support

efficient parallelism for recursive, functional programs — MaPLe [67], Multicore OCaml [37, 56], and GHC.

MaPLe (an extension of MLton) is a whole-program, optimizing compiler for Standard ML [45]; it supports

nested fork/join parallelism, and generates extremely efficient code.

The experiments in this section are performed on a 48 core machine (96 hyper-threads) made up of

2 × 2.9 GHz 24 core Intel Xeon Platinum 8268 processors, with 1.5TB of memory, and running Ubuntu

18.04. The shared memory on this machine is divided into two NUMA nodes such that CPUs 0-23 and

48-71 use node-0 as their local memory node, and 24-47 and 72-95 use node-1. In our experiments we only

use 48 threads (no SMT), evenly distributed across both NUMA nodes (numactl −−physcpubind=48-95). All

experiments are performed using the default memory allocation policy which always allocates memory

on the current NUMA node. We observed that using a round-robin memory allocation policy (option

−−interleave=0,1) did not affect performance, and therefore we do not report those results.

Each benchmark sample is the median of 9 runs. To compile the C programs generated by our imple-

mentation we use GCC 7.4.0 with all optimizations enabled (option -O3), and the Intel Cilk Plus language

extension [14] (option -fcilkplus) to realize parallelism. To compile sequential LoCal programs we use the

open-source Sequential Gibbon compiler, but we modify it to include arrays with in-place mutation using

linear types, just like Parallel Gibbon. For MaPLe, we use version 20200220.150446-g16af66d05 compiled from

its source code. For OCaml, we use the Multicore OCaml compiler [56] (version 4.10 with options -O3),

along with the domainslib 5 library for parallelism. We use GHC 8.6.5, with options -threaded -O2, along

with the monad-par [40] library for parallelism.

3.4.1. Benchmarks. We use the following set of 10 benchmarks. For GHC, we use strict datatypes in

benchmarks, which generally offers the same or better performance, and avoids problematic interactions

between laziness and parallelism. All programs use the same algorithms and datatypes (including mutable

arrays, which are provably race-free in Gibbon and GHC), have identical granularity control thresholds,

5https://github.com/ocaml-multicore/domainslib
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and are run with the same inputs. This way, each pairing of program and input creates a deterministic

task graph — which does not change when varying the number of threads — and the evaluation focuses

on data representation and code generation, rather than on decomposing and scheduling parallel tasks.

• fib: Compute the 48th fibonacci number with a sequential cutoff after depth=18: a simple baseline

for scaling.

• buildtreeHvyLf: This is an artificial benchmark that is included here to measure parallel alloca-

tion under ideal conditions. It constructs a balanced binary tree of height 18, and computes the

20th fibonacci number at each leaf, with sequential cutoff after depth=12.

• buildKdTree and countCorrelation and allNearest: buildKDTree constructs a kd-tree [25] con-

taining 1M 3-d points in the Plummer distribution. The sequential cutoff is at a node containing

less than 32K points. countCorrelation takes as input a kd-tree and a list of 100 3-d points, and

counts the number of points which are correlated to each one. The chunk-size for the parallel-

map is 4, and the sequential cutoff for countCorrelation is at a node containing less than 8K points.

allNearest computes the nearest neighbors of all 1M 3-d points. The chunk-size for the parallel-

map is 1024.

• barnesHut: Use a quad tree to run an nbody simulation over 1M 2-d point-masses distributed

uniformly within a square. The chunk-size for the parallel-map is 4096.

• coins This benchmark is taken from GHC’s NoFib 6 benchmark suite. It is a combinatorial search

problem that computes the number of ways in which a certain amount of money can be paid by

using the given set of coins. The input set of coins and their quantities are [(250,55),(100,88),

(25,88),(10,99),(5,122),(1,177)], and the amount to be paid is 999. The sequential cutoff is after

depth=3.

• countNodes: This operates on ASTs gathered from the Racket compiler when processing large,

real programs. The benchmark simply counts the number of nodes in a tree. For our implemen-

tation, we store the ASTs on disk in a serialized format which is read using a single mmap call. All

others parse the text files before operating on them. To ensure an apples-to-apples comparison,

we do not measure the time required to parse the text files. The size of the text file is 1.2G, and

that same file when serialized for our implementation is 356M. The AST has around 100M nodes

in it. The sequential cutoff is after depth=9.

6https://gitlab.haskell.org/ghc/nofib

53



3. RECONCILING PARALLELISM AND SERIALIZATION

• constFold: Run the constFold function shown in Figure 2.1 on an artificially generated syntax-

tree, which is a balanced binary tree of Plus expressions, with a Lit as a leaf. The height of the

syntax-tree is 26, the sequential cutoff is after depth=8.

• mergeSort: An in-place parallel merge sort, which bottoms out to a sequential quick sort when

the array contains less than 8192 elements. For our implementation, we use the qsort function

from the C standard library to sort small arrays. The Haskell implementation is taken from Kuper

et al’s artifact accompanying their paper [35], and it makes an FFI call to a sequential quick sort

written in C. MaPLe and OCaml bottom out to a sequential quick sort implemented in their source

language. The input array contains 8M randomly generated floating point numbers.

3.4.2. Results: Parallel versus Sequential Gibbon. Figures 3.15a and 3.15b show the results of

comparing performance of benchmarks compiled using our parallel implementation, labeled “Ours”, rel-

ative to Sequential Gibbon. The quantities in the table can be interpreted as follows. Column 𝑇𝑠 shows

the run time of a sequential program. which serves the purpose of a sequential baseline. 𝑇1 is the run

time of a parallel program on a single thread, and 𝑂 the percentage overhead relative to 𝑇𝑠 , calculated as

((𝑇1−𝑇𝑠)/𝑇𝑠)∗100. 𝑇48 is the run time of a parallel program on 48 threads and 𝑆 is the speedup relative to𝑇𝑠 ,

calculated as𝑇𝑠/𝑇48. 𝑅 is the number of additional regions created to enable parallel allocations, calculated

as 𝑅48−𝑅𝑠 . For a majority of benchmarks, the overhead is under 3%, and the speedups range between 31.7×

and 43.5×. These speedups match, or in cases such as barnesHut and allNearest, exceed those of optimized

implementations that have been analyzed on similar machines [54, 67, 4].

With respect to the difference in speedups between different benchmarks, we see the expected rela-

tionship among them which reflects their memory access patterns. Compute-bound benchmarks such as

fib scale very well, whereas benchmarks such as constFold and buildKdTree can become memory bound,

and do not scale over a certain number of cores7. With respect to buildKdTree, a significant portion of its

total running time is spent in sorting the points at each node. We observed that our mergeSort doesn’t scale

well on small inputs, and since buildKdTree performs a series of smaller and smaller sorts, it eventually runs

into this, leading to lower scalability. But its high overhead (14.6%) and low speedup (10.6×) are in the same

ballpark as an optimized C implementation which [20] analysed on a 32-core machine. Tables 3.2 and 3.3

show that MaPLe, GHC and OCaml also scale similarly. Overall, these results show that our technique is

able to handle parallelism in a mostly-serialized data representation effectively.
7For example, a simple parallel dot-product computation (in Cilk) has a similar linear access pattern and low arithmetic

intensity to constFold, and it achieves only a 6X speedup on this same machine.
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Gibbon Ours

Benchmark 𝑇𝑠 𝑇1 O 𝑇48 S

fib 12.8 12.8 0 0.31 41.3
buildtreeHvyLf 4.69 4.69 0 0.11 42.6
buildKdTree 2.33 2.67 14.6 0.22 10.6
countCorr 1.46 1.47 0.68 0.044 33.2
allNearest 1.0 1.01 1 0.023 43.5
barnesHut 3.21 3.21 0 0.074 43.4
coins 3.04 3.13 3 0.096 31.7
countnodes 0.21 0.21 0 0.006 35.0
constFold 1.78 1.78 0 0.16 11.1
x86-compiler 1.08 1.08 0 0.041 26.3
mergeSort 1.58 1.60 1.27 0.039 40.5

average - - 1.28 - 29.5

(a) 𝑇𝑠 is the run time of Sequential Gibbon. 𝑇1 and 𝑇48 are the run times of Parallel Gibbon on 1 thread and on 48

threads respectively. 𝑂 is the single-thread percentage overhead: 𝑂 = (𝑇1 −𝑇𝑠 )/𝑇𝑠 ∗ 100. 𝑆 is the 48-thread speedup:

𝑆 = 𝑇𝑠/𝑇48.
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(b) Speedups relative to Sequential Gibbon.

Figure 3.15. Parallel Versus Sequential Gibbon.
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Fragmentation. Traversals on a serialized heap are efficient because serialization minimizes pointer-

chasing and maximizes data locality. But the heap produced by running intra-region allocations in parallel

is fragmented, which can affect the performance of subsequent traversals that consume this heap, due to

additional pointer dereferences and worse locality. To measure this downstream effect, we compare the run

time of a single-threaded traversal operating on a sequentially allocated value to that traversal operating on

a value allocated in parallel, which will be fragmented. Thus, the thing whose run time is being compared—

the traversal—stays the same but it is given inputs that have different levels of fragmentation. We also

measure the amount of fragmentation introduced for parallelism by counting the number of regions created

solely to enable parallel allocations. Table 3.1 shows the results.

We use a subset of the benchmarks from Section 3.4.1 whose output is a serialized value (the other

benchmarks do not measure the construction of new values), and measure the time required to traverse

the output. For example, the benchmark trav(constFold) constructs an input expression, runs constant

folding over it, and then sequentially traverses the resulting expression (counts the number of leaves in

it), but the number reported is only the run time of the traversal and it does not include the time taken to

run constFold itself. Each benchmark sample is the median of 9 runs, such that each run allocates a value

and then traverses it 𝑁 times, where 𝑁 is set high enough to get the total run time over one second, and

the run time of a single traversal is reported. 𝑇𝑠 is the time required to sequentially traverse a sequentially

allocated value, which is the baseline.

We compare against this baseline the performance of traversing a value allocated in parallel with two

levels of fragmentation: optimum and maximum. In the optimum setting, the allocators are identical to

those used for measurements reported in Figure 3.15a. That is, they control fragmentation by control-

ling the granularity of parallelism (using the thresholds given in Section 3.4.1) and are compiled using

the region-upon-steal allocation policy (Section 3.3.5). 𝑅opt is the number of additional regions created to

allocate a value in parallel using 48 threads. For example, the sequential constFold uses a single region

and its parallel version requires 132 additional regions (133 regions total). 𝑇opt is the time required to se-

quentially traverse the allocated value, and 𝑂opt is the percentage overhead relative to 𝑇𝑠 , calculated as

𝑂opt = (𝑇opt − 𝑇𝑠)/𝑇𝑠 ∗ 100. In the maximum setting, the allocators do not control fragmentation at all

(no granularity control), and they are compiled using the region-upon-spawn allocation policy, which cre-

ates a fresh region for every intra-region allocation task that is spawned. This setting thus represents the

upper bound on the amount of fragmentation that can be introduced due to parallelism, where the heap

essentially degenerates to a full pointer-based representation. 𝑅max , 𝑇max and 𝑂max are the corresponding
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Table 3.1. 𝑇𝑠 is the time required to sequentially traverse a sequentially allocated value.

𝑅opt is the number of additional regions created to allocate a value in parallel using 48

threads,𝑇opt is the time required to sequentially traverse it, and𝑂opt is the percentage over-

head of the traversal: 𝑂opt = (𝑇opt−𝑇𝑠)/𝑇𝑠 ∗100. 𝑅max ,𝑇max and𝑂max are the corresponding

numbers for a value allocated in parallel using 48 threads with maximum fragmentation.

𝑂max is the percentage overhead relative to 𝑇𝑠 calculated as 𝑂max = (𝑇max −𝑇𝑠)/𝑇𝑠 ∗ 100.

Seq Alloc. Optimum Fragmentation Maximum Fragmentation

Benchmark 𝑇𝑠 𝑅opt 𝑇opt 𝑂opt 𝑅max 𝑇max 𝑂max

trav(buildtreeHvyLf) 0.99ms 341 1.02ms 3.03 262K 11.45ms 1056.6
trav(buildKdTree) 6.22ms 31 6.64ms 6.75 262K 55ms 784.2
trav(coins) 0.35s 9K 0.37s 5.71 75M 5.21s 1388.6
trav(constFold) 0.30s 132 0.32s 6.67 67M 2.70s 800
trav(x86-compiler) 366.2𝜇𝑠 1K 377.5𝜇𝑠 3.09 14K 464.3𝜇𝑠 26.8

geomean - - - 4.74 - - 476.9

numbers for this fragmentation setting when using 48 threads. 𝑂max is the percentage overhead relative

to 𝑇𝑠 , calculated as 𝑂max = (𝑇max −𝑇𝑠)/𝑇𝑠 ∗ 100.

Comparing 𝑅opt and 𝑅max , we see that in the optimum setting most of the allocated heap is still serial-

ized and uses only a small number of additional regions—less than 0.13% of the maximum— in most cases.

For x86-compiler, this percentage is higher (7.14%) compared to the other benchmarks because even in the

optimum setting this benchmark does not control the granularity of parallelism, which is controlled only

by the structure of the input as we discuss in Section 3.4.5. In this case, the region-upon-steal allocation pol-

icy is responsible for trimming the number of regions from 14K to 1K. With respect to the run time of the

traversal, the overhead with optimum fragmentation is between 3.03% to 6.75%, with a geomean of 4.74%.

In addition to fragmentation, the NUMA memory policy 8 has a significant impact on the overall overhead

because in the parallel version potentially 50% of memory accesses are at a non-local NUMA memory node.

If we run the experiment using a single NUMA node (numactl −−membind=0 −−physcpubind=1-24,49-71), the

geomean overhead drops to 1.44%, with a significant reduction in the overheads for buildKdTree (0.96%)
8As described in the experimental setup, the shared memory on this machine is divided into two NUMA nodes and we use

48 threads evenly distributed across both nodes with the default local memory allocation policy.
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and constFold (2.95%). In the presence of maximum fragmentation, we see the expected result: since heap

degenerates to a full pointer-based representation, the traversals are several times slower and the benefits

of using a serialized representation are lost. This slowdown in traversing a pointer-based representation

compared to a serialized one is consistent with the results given in previous work [65, 66]. Overall, these

results show that using the granularity of parallelism to guide the data representation works well in prac-

tice, and gives us an efficient, mostly-serialized representation.

3.4.3. Results: Gibbon versus other compilers. Table 3.2 shows the results of comparing perfor-

mance of our implementation to MaPLe, OCaml, and GHC. For each compiler, Column 𝑇𝑠 is the run time

of a sequential program, Column 𝑇48 is the run time of a parallel program on 48 threads, and an adja-

cent column to each shows the corresponding speedup (or slowdown) of our implementation relative to

this compiler. For example, on 48 threads, allNearest is 3.95× faster with our implementation compared to

OCaml. Figures 3.16 and 3.17 show how these benchmarks scale on 48 threads. With respect to self-relative

comparisons, on average, we scale similarly to MaPLe, and better than OCaml or GHC.

Across all benchmarks, on a single thread our Parallel Gibbon offers a 1.93×, 2.53×, and 2.14× ge-

omean speedup compared to MaPLe, OCaml, and GHC, respectively. When utilizing 48 cores, our geomean

speedup is 1.92×, 3.73× and 4.01×. Overall, these results show that we start with a faster baseline in the

sequential world, and we’re able to preserve the speedups in the parallel as well, meaning that the use

of dense representations to improve sequential processing performance coexists with scalable parallelism.

The only benchmark for which our implementation is slower compared to others is coins. This benchmark

makes heavy use of linked-list operations such as cons, head, and tail, and our implementation uses malloc

to allocate memory for every cons, which is inefficient. Also, our dense representation currently offers no

benefit when building linked-lists by cons’ing onto existing lists. All others, MaPLe, OCaml and GHC,

use a copying garbage collector [57, 67, 39] allowing them to use a bump-allocator, making them more

efficient than our implementation. Table 3.3 gives the self-relative performance results for MaPLe, OCaml

and GHC.

3.4.4. Results: Full evaluation details for other compilers. In Section 3.4, we presented the re-

sults for MaPLe, OCaml, and GHC by showing speedups/slowdowns of our implementation relative to

them. In this section, we give the full evaluation results. Figure 3.3 shows the self-relative comparisions

for MaPLe, OCaml and GHC. The quantities in the table can be interpreted as follows. Column 𝑇𝑠 shows
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Table 3.2. Comparison of Ours with MaPLe, OCaml, and GHC — execution time in sec-

onds, and ratios to Ours. 𝑇𝑠 is the run time of a sequential program, and𝑇48 is the run time

of a parallel program on 48 threads.

MaPLe OCaml GHC

Benchmark 𝑇𝑠

MaPLe

Ours
𝑠 𝑇48

MaPLe

Ours
48 𝑇𝑠

OCaml

Ours
𝑠 𝑇48

OCaml

Ours
48 𝑇𝑠

GHC

Ours
𝑠 𝑇48

GHC

Ours
48

fib 37.4 2.92 1.06 2.93 21.1 1.65 0.50 1.61 31.9 2.5 0.76 2.45
buildtreeHvyLf 14.5 3.09 0.35 3.18 8.60 1.83 0.25 2.27 12.4 2.64 0.34 3.09
buildKdTree 7.26 3.11 0.41 1.86 10.9 4.68 1.84 8.36 13.4 5.75 2.21 10.0
countCorr 10.5 7.19 0.27 6.14 13.9 9.52 0.37 8.41 3.54 2.42 0.15 3.41
allNearest 2.38 2.38 0.06 2.60 3.01 3.01 0.091 3.95 2.07 2.07 0.068 2.96
barnesHut 5.05 1.57 0.12 1.62 10.9 3.40 0.44 5.94 4.97 1.55 0.33 4.46
coins 1.71 0.56 0.05 0.52 1.05 0.34 0.036 0.37 0.82 0.27 0.085 0.88
countnodes 0.37 1.76 0.019 3.16 0.46 2.19 0.034 5.67 1.45 6.90 0.049 8.16
constFold 2.36 1.32 0.23 1.44 17.7 9.94 2.23 13.9 3.71 2.08 0.64 4.00
x86-compiler 1.34 1.24 0.042 1.02 1.20 1.11 0.09 2.20 2.34 2.16 0.44 10.7
mergeSort 1.74 1.10 0.047 1.20 3.83 2.42 0.19 4.87 2.74 1.73 0.16 4.10

geomean - 1.93× - 1.92× - 2.53× - 3.73× - 2.14× - 4.01×

the run-time of a sequential program, which serves the purpose of a sequential baseline. 𝑇1 is the run-

time of a parallel program on a single thread, and 𝑂 the percentage overhead relative to 𝑇𝑠 , calculated as

((𝑇1−𝑇𝑠)/𝑇𝑠)∗100. 𝑇48 is the run-time of a parallel program on 48 threads and 𝑆 is the speedup relative to𝑇𝑠 ,

calculated as𝑇𝑠/𝑇48. These comparisions are self-relative, meaning that they compare sequential MaPLe to

parallel MaPLe, sequential OCaml to parallel OCaml, and sequential GHC to parallel GHC. With respect to

self-relative comparisons, on average, we scale similarly to MaPLe, and better than OCaml or GHC, and the

single-thread overhead across all four compilers is comparable to each other. Figure 3.16 shows speedups

on 1-48 threads relative to the fastest sequential baseline, which is Sequential Gibbon for all benchmarks

except coins, for which GHC is fastest.

3.4.5. Results: x86-compiler case study. As an example of a complex benchmark which performs

multiple traversals over different datatypes, we implement a subset of a compiler drawn from a university
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Figure 3.16. Speedups relative to the fastest sequential baseline, which is Sequential Gib-

bon for all benchmarks except coins, in which case sequential GHC is fastest.

course [55]. Our version compiles to x86, from a source language that supports integers and arithmetic and

comparison operations on them, booleans and operations such as and and or, and a conditional expression,

if. To compile this high-level language, we first translate it to an intermediate language similar to C, in

which the order of evaluation is explicit in its syntax. The compiler is written in a nanopass style [51],
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Figure 3.17. Remaining plots showing speedups relative to the fastest sequential baseline.

and is made up of five passes: (1) typecheck type checks the source program, (2) uniqify freshens all bound

variables to handle shadowing, (3) explicateControl translates to an intermediate language similar to C,

(4) selectInstructions generates x86 code which has variables in it, (5) and assignHomes maps each variable

to a location on the stack. The input to this benchmark is a synthetically generated, balanced syntax-tree

with conditional expressions at the top, followed by a sequence of let bindings. The structure of the input

program is used to control the granularity of parallelism. The first three passes process the branches of

conditionals in parallel, and subsequent ones process every block of instructions in parallel.

On this compiler benchmark, Parallel Gibbon offers a 1.24×, 1.11×, and 2.16× speedup on a single

thread, and 1.02×, 2.20× and 10.7× speedup when utilizing 48 threads, compared to MaPLe, OCaml, and

GHC, respectively. Note that most of the run time and also the self-relative parallel speedup of this bench-

mark is due to assignHomes. The first four passes of the compiler have a linear memory access pattern and

low arithmetic intensity, much like constFold. The passes inspect the input expression, perform inserts or

lookups on shallow environments (which only contain entries for variables that are in scope at a point), and

then allocate the output. But assignHomes works in a different way. Since it needs to assign a unique stack

location to every variable occurring in an expression, it constructs an environment containing all variables

in the expression (as opposed to just those in scope at a point), and then performs repeated lookups on

it to rewrite variable occurrences with stack location references. This environment is significantly larger

than those used by other passes, making assignHomes much more work-intensive and suitable for parallel

execution.
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Table 3.3. Execution time in seconds, self-relative overheads on a single thread (Columns

3, 8 and 13) and self-relative speedups on 48 threads (Columns 5, 10 and 15). 𝑇𝑠 is the

run-time of a sequential program. 𝑇1 and 𝑇48 are the run-times of a parallel program on

1 thread and on 48 threads respectively. 𝑂 is the single-thread percentage overhead: 𝑂 =

(𝑇1 −𝑇𝑠)/𝑇𝑠 ∗ 100. 𝑆 is the 48-thread speedup: 𝑆 = 𝑇𝑠/𝑇48.

MaPLe OCaml GHC

Benchmark 𝑇𝑠 𝑇1 O 𝑇48 S 𝑇𝑠 𝑇1 O 𝑇48 S 𝑇𝑠 𝑇1 O 𝑇48 S

fib 37.4 38.6 3.2 0.91 41.1 21.1 21.1 0 0.5 42.2 31.9 31.8 -0.3 0.76 42

buildtreeHvyLf 14.5 14.6 0.69 0.35 41.4 8.6 8.6 0 0.25 34.4 12.4 12.4 0 0.34 36.5

buildKdTree 7.26 7.65 5.37 0.41 17.7 10.9 11.7 7.34 1.84 5.92 13.4 13.6 1.5 2.21 6.06

countCorr 10.5 10.5 0 0.27 38.9 13.9 15.0 7.9 0.37 37.6 3.54 3.57 0.84 0.15 23.6

allNearest 2.38 2.4 0.84 0.06 39.6 3.01 3.09 2.65 0.091 33.1 2.07 2.04 -1.4 0.068 30.4

barnesHut 5.05 5.33 5.5 0.12 42 10.9 11 0.91 0.44 24.7 4.97 5.29 6.4 0.33 15.1

coins 1.71 1.51 -11% 0.05 34.2 1.05 1.07 1.9 0.036 29.1 0.82 0.82 0 0.085 9.6

countnodes 0.37 0.38 2.7 0.019 19.5 0.46 0.45 -2.17 0.034 13.5 1.45 1.46 0.68 0.049 29.6

constFold 2.36 3.29 39.4 0.23 10.3 17.7 19.2 8.5 2.23 7.94 3.71 3.99 7.55 0.64 5.80

x86-compiler 1.34 1.33 -0.74 0.042 31.9 1.2 1.3 8.33 0.09 13.3 2.34 2.38 1.7 0.44 5.31

mergeSort 1.74 1.84 5.75 0.048 36.3 3.83 3.94 2.87 0.19 20.16 2.74 2.95 7.66 0.16 17.1

average - - 3.29 - 33.7 - - 4.14 - 15.3 - - 1.35 - 15.2

Here we have only taken the first step towards developing an efficient parallel compiler, and there is

ample opportunity for further investigation in this area. In the future, we plan to expand the compiler’s

source language to include constructs such as top-level function definitions and modules which are a source

of parallelism in many real compilers.
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Memory Management for Mostly-Serialized Heaps

In this dissertation, we propose a garbage collector that takes Gibbon from a domain-specific tool for

tree traversals to a general-purpose functional language implementation. We adopt the tried-and-true design

of the tracing, generational collector, which is used by many state-of-the-art implementations of functional

languages. Gibbon’s denser data representations violate many of the usual assumptions baked into many

memory management systems, making them unsuitable to be directly used. In this setting, the solution

we propose is a generational collector with a copying (and compacting, and pointer-eliminating) collector

for its younger-generation, while keeping Gibbon’s reference-counted-regions for the older generation,

which now become partial/deferred reference counts1, similar to Ulterior Reference Counting [11]. The

new system, GC-Gibbon, includes several novel features to deal with the mostly-serialized setting. We

must introduce new regions during collection time, to keep all roots valid after collection (Section 4.1.1).

Because values continue growing after promotion to the old-generation, we choose to allow allocation

into old-generation regions (Section 4.1.2), which in turn incurs a need for a remembered set. we allow

sharing, in spite of the fact that many objects are smaller than a word-sized pointer, and thus develop a

new approach to forwarding pointers (Section 4.1.3). In this chapter:

• We introduce a new garbage collection algorithm that deals with dense data, where the presence

of pointers or header objects cannot be counted on. The hybrid approach of reference-counted

regions and copying collection enables fast bump-allocation of new objects and regions, while

retaining efficient handling of large and growing regions.

• We present a suite of solutions to the above challenges (Section 4.1) that enable the first practical,

complete, and correct solution to automatic memory management in mostly-serialized heaps.

• We evaluate the resulting system (Section 4.3) on both tree-traversals, and benchmarks that stress

small object allocation and collection. This new approach retains Gibbon’s strong performance

on tree-traversals (where the serialized data approach is most effective) and improves Gibbon to
1Heap cycles are not possible in a pure, strict setting, but we still need backup tracing collection of the old-generation, for

defragmentation.
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achieve reasonable performance on out-of-order small allocations where the approach is weakest,

more closely resembling mature compilers and runtime systems that have been heavily optimized

for such programs, using traditional memory representations. For small allocations, our system

is 3.79×, 0.46×, and 1.09× geomean faster than Legacy-Gibbon, GHC, and Java, respectively. For

bulk-tree-traversals, our geomean speedup is 1.02×, 2.19× and 1.5×.

4.1. Design

The main challenge we address is that of efficiently copying mostly-serialized objects, while maintain-

ing sharing. To maintain sharing efficiently, our collector has to cope with many objects being smaller

than a word-sized pointer, there being partially written objects, and there being pointers into the middle

of objects at arbitrary byte offsets.

A collection starts when the mutator2 requests a new chunk and the resulting heap size would exceed

a certain threshold3. All new chunks are allocated in the young generation (or, nursery) by bumping the al-

location pointer. When it becomes full, the young-generation is collected by a copying collector. Although

it is common to divide the young-generation into equal semispaces [17], our design does not. Instead, we

use single slab of memory to serve as the young-generation, and we have the old-generation serve directly

as the old-generation (i.e., the destination for copying data during collection).

In the next few sections, we concern ourselves with how we treat a minor collection, tracing the

young-generation, and copying to a different region representation in the old-generation where regions

are granted their own growing, memory allocations, and equipped with extra metadata. At the end of

minor collection, old-generation objects may be freed due to (deferred) reference count changes, yet old-

generation tracing does not occur until a major collection (Section 4.1.5).

4.1.1. GC roots and evacuation. We use a shadow-stack [31] to maintain a root set of live objects

for collection. Following the convention, addresses of objects (locations in LoCal) that are live after an

allocation point (letregion) are spilled to the shadow-stack, and are restored later, potentially having been

updated by an intervening collection. Spilling is also necessary across function call sites, as the function

body might perform allocations. Along with the spilled location, we also spill and restore the end-of-chunk

2The user program, which mutates the heap.
3There is only one expression whose evaluation may trigger a collection—letregion—which allocates the initial chunk for

a new region. Perhaps unintuitively, the application of a data constructor never triggers a collection, although it may grow a

region, which involves adding chunks directly to the old-generation Section 4.1.2.
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address for the chunk that the spilled location points into. There are two reasons: (1) if the location points

into a young-generation chunk, it will be promoted to the old-generation and its end address will change,

and (2) if it points into an old-generation chunk, the collector would require its end address to access the

region-level metadata (reference count, outset etc.) whose address is stored at the footer. Also, the type

of the value residing at the spilled location is stored on the shadow-stack. It serves as a numeric index

into an info-table (described in Section 4.2) that stores layout information required to guide the evacuation

routine. Each frame on the shadow-stack is represented as follows:

struct shadowstack_frame { char *ptr; char *endptr; uint32_t type; };

We now present the algorithm—given in Figures 4.1, 4.2, 4.3—to evacuate each root in the root set.

Here we focus our attention on evacuating complete objects without maintaining sharing. We will discuss

how we handle incomplete objects and maintain sharing extensively in subsequent sections. The main

entrypoint of the algorithm is evacuate_root (given on line 5 in Figure 4.1). It first checks whether a young-

generation object has already been evacuated, in which case it writes to the start and end addresses of

the root the corresponding addresses of the relocated data in the old-generation (using the forwarding

pointer mechanism described in Section 4.1.3). Otherwise, it allocates a fresh region in the old-generation

to relocate this object. This fresh region can grow during collection, using the normal policy of doubling

the size of each additional chunk in the linked series of chunks. Then, it learns the kind of object it is

evacuating by inspecting the first tag in the object, after which it carries out the evacuation accordingly.

After completing evacuation, the start and end addresses of the root are updated the same as before.

To evacuate an object (line 3 in Figure 4.2) it is copied from the source address, namely from_start, to

the destination address, namely to_start. Recall that an object has two subcomponents, a fixed portion

consisting of a tag and constant-sized fields, and an extended portion containing variable number of bytes

due to the child objects. The fixed portion is copied directly using memcpy, and the child objects are processed

by recursively inlining them into the destination region. We use a worklist (line 18 in Figure 4.2) instead

of call-stack based recursion since that is more efficient in our experience.

The first tag of the object can be one of the following, which informs how it will be evacuated:

• Tagged indirection pointer: If the target of the pointer is in the young-generation, it is inlined

by copying its data. Otherwise, the indirection pointer is copied as it is. In the latter case, the

indirection pointer written by the collector is an old-to-old pointer, and thus the reference count
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1 global info_table [] −− store type layouts per data constructor (static)

2 global fwd_table [] −− map spans of young-generation memory to old-generation

3 global skip_table [] −− map address of value start to its end

4

5 fun evacuate_root(from_start , ty):

6 if in_oldgen ?(from): −− skip root

7 else if already_marked ?(from): update_root(fwd_addr(from_start ))

8 else: (to_start , to_end) := alloc_oldgen_region ()

9 evacuate_object(from_start , ty, to_start)

10 update_root(to_start , to_end)

11

12 −− Returns a pointer into the old-generation, after the given value

13 fun skip_over(from):

14 assert(not(zero_location ?(from )))

15 return skip_table[from]

16

17 −− Returns a pointer in the old-generation

18 fun fwd_addr(from):

19 −− For the first location in the region, the region metadata lets us forward.

20 if zero_location ?(from): return footer_fwd_ptr(region(from))

21 else: while offset < max_scan:

22 let next = deref(from + offset)

23 match(next):

24 Forwarded(addr): return (addr - offset)

25 Burned: offset += 1

26 −− The interval-map maps source to target bytes by internally mapping entire

27 −− (src..src+k)⇒ (dst..dst+k) ranges efficiently:

28 return fwd_table[from] −− side metadata lookup = slow path

Figure 4.1. Part of the evacuation algorithm. Global definitions, helpers, and entrypoint

to begin evacuation. See also Figures 4.2 and 4.3.
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1 −− Recursively evacuate the value at a given location, with the given type. Because of the acyclic heap,

2 −− this will never recur back to the same location.

3 fun evacuate_object(from_start , ty, to_start ):

4 let ty_stk = [ty]

5 let to = to_start

6 let from = from_start

7 let span_start = from_start

8 let span_bytes = 0

9

10 fun end_span ():

11 if span_bytes > max_span:

12 let sz = from - span_start

13 fwd_table[span_start .. sz] := to-sz .. to

14 span_bytes := 0

15 span_start = from

16

17 −− One evacuate-and-burn session on one contiguous interval:

18 while (from_ty = pop(ty_stk )):

19 while (chunk_redirection ?(from )):

20 forward_obj(from , to)

21 from := deref(from)

22 end_span ()

23 if indirection ?(from):

24 −− start a separate interval in a new chunk:

25 to ' = evacuate_object(deref(from), from_ty , to)

26 forward_obj(from ,to)

27 from += TAGGED_INDIRECTION_SIZE

28 to := to '

29 end_span ()

Figure 4.2. Continued from figure 4.1, core burning and forwarding algorithm for sharing

maintenance.
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1 else if already_marked ?(from):

2 to := write_indirection(to, fwd_addr(from))

3 if non_empty ?( ty_stk ):

4 from := skip_over(from)

5 end_span ()

6 else: −− regular data-copying codepath

7 −− advance to,from cursors past the data written:

8 (to ',from ') =

9 write_tag_and_scalars(to, from)

10 −− look up types of 0 or more non-scalar data fields (children):

11 push_children(stk , info_table[from])

12 fwded = burn_or_forward_obj(from)

13 to := to '

14 from := from '

15 if fwded: end_span ()

16 else: span_bytes += from ' - from

17

18 if not(zero_location ?( from_start )):

19 −− Populate for future slowpath lookups one byte after the end

20 skip_table[from_start] := to

21

22 return to

Figure 4.3. Continued from figure 4.2, rest of the forwarding algorithm.

of the region containing the target object must be updated, as our (deferred) reference counts

include only old-generation pointers.

Updating reference counts requires accessing the target region’s metadata, which must be

findable given only the contents of the tagged indirection pointer being copied. To accomplish

this we use the 64-bit indirection pointers to pack in both (1) the address of the target object, and

(2) the offset from there to the target chunk’s footer—which is where the region metadata resides.

We give details of this pointer encoding in Section 4.2.
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Recall that the mutator uses indirection pointers to share objects among different regions.

Thus, there is additional work required here to carry forward this sharing into the old generation.

We postpone this discussion to Section 4.1.3.

• End-of-chunk pointer: Due to the eager promotion policy (Section 4.1.2) the target of an end-

of-chunk pointer is always in the old-generation, and thus an object is considered completely

evacuated upon reaching this tag. But, we still need to combine metadata information for two

regions: (1) the fresh region that was created to copy the object that ends in this end-of-chunk

pointer, and (2) the old-generation region that was created earlier due to eager promotion to store

the remainder of this object. For this reason, all end-of-chunk pointers also need to encode an

offset from their target to the target chunk’s footer. After this step, one of the region metadata

objects is deleted since an end-of-chunk pointer always links two chunks of the same logical

region.

• Burned or forwarded object: Objects which have already been evacuated before are marked as

burned or forwarded, depending on whether there’s enough room for a forwarding pointer. We

discuss these extensively in Section 4.1.3.

• Regular data constructor: If the tag is not among the reserved tags listed above, it corresponds

to an allocation of a regular data constructor and is copied by referring to the info-table (Sec-

tion 4.2). Its scalar data (fixed portion) is copied using memcpy and its child objects (data constructor

fields) are pushed on the worklist for evacuation. Any untagged shortcut pointers stored in this

constructor have to re-created to point to the new addresses of the relocated child objects. The cre-

ation of new shortcut pointers is deferred until its corresponding child object begins evacuation,

since the child’s new address cannot be known in advance. In the implementation, the worklist

stores a pair (Type, Option<*mut i8>), where the (Option<*mut i8>) corresponds to the address of

the potential4 shortcut pointer that needs to be created when this object begins evacuation.

After all GC roots have been evacuated, any old-generation regions that are dead as per the deferred

reference counting mechanism are freed. The minor collection is now considered complete and the mutator

resumes execution. We discuss the major collection strategy in Section 4.1.5.

Evacuation order of GC roots. Like other tracing collectors, the layout and locality of the old-

generation heap produced by our collector is sensitive to the order in which roots are processed [2]. But

4Not all data constructors store shortcut pointers.

69



4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

C 2 C 1 N
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newest/top

Young Gen. Old Gen.

(a) Evacuating GC roots from oldest to newest would create a compact old-generation object with no indirection

pointers.

C 2 C 1 N

…

Root Set Young Gen. Old Gen.

oldest/bottom

newest/top

(b) Evacuating GC roots from oldest to newest would create an old-generation object with unnecessary indirections.

Figure 4.4. Figure (a) shows a young-generation object, and a root set representative of in-

order allocation workloads. Figure (b) shows the same young-generation object, but a root

set representative of reverse-order allocation workloads. These root sets have different

traversal orders which are efficient.

our collector is even more sensitive to this ordering. Certain traversal orders produce a compact heap

with no indirection pointers, while some others produce significantly pointer-heavy heaps. Consider the

young-generation and the root set in Figure 4.4a and Figure 4.4b. The young-generation object is identical

in both cases, but the order of GC roots corresponding to the child objects is different. In Figure 4.4a, the

oldest root corresponds to the parent object, and roots toward the top correspond to child objects deeper

in the graph. In Figure 4.4b, the roots are ordered in the opposite order. This ordering of roots in the root

set is a consequence of different workloads: in-order allocators like mkList tend to create root sets like

Figure 4.4a, while reverse-order allocators like reverse tend to create root sets like Figure 4.4b. If a col-

lection is triggered at this point, there is no fixed order of root set traversal (e.g. newest-to-oldest versus

oldest-to-newest) that would handle both examples efficiently5. For these list examples, an efficient traver-

sal starts evacuation with the head of the list, promoting the entire list into a single old-generation region

5We say that a traversal order is efficient if it produces compact heaps and introduces minimum fragmentation.
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(Figure 4.4a). An inefficient traversal would evacuate the tail of the list first, and then subsequently evac-

uate earlier parts of the list which would be linked by (unnecessary) indirections to the already-evacuated

portions (Figure 4.4b). How can we reconcile different efficient traversal orders?

The key insight here is to pick an order that consistently evacuates upstream data earlier, irrespective of

the order of allocation. Specifically, we want a traversal order that (1) evacuates roots for the newer regions

before the older regions, and (2) within each region, evacuates roots that are towards the beginning of the

region before roots that are towards the end.

We get such an ordering as follows. First, we bump the allocation pointer of the young-generation

backwards. That is, the allocation pointer starts at the end of the young-generation (the high address), and

moves towards the start (the low address). Next, we sort the root set such that roots corresponding to

objects at lower addresses appear before those at higher addresses. This policy gives us both the desired

properties because objects towards the beginning of the region already occupy addresses lower than those

of objects towards the end, and the reversed bump allocation pointer puts newer regions at addresses lower

than those of older regions.

For a desirable post-collection heap, indirections should only be proportional to actual sharing in the

data. To quantify this notion more precisely, we define an optimal heap with minimum indirection count:

Definition 4.1.1: Minimal indirections post-collection

The minimum number of indirections post-collection includes: up to one per root, plus 𝑁 − 1 indirections

for every object which has 𝑁 > 1 references to it.

If a live object has only a single reference to it, then it must be placed in the same region as the object

from which it is reachable. The per-root indirections are there because the roots themselves represent

pointers into the heap data. Furthermore, we currently place these pointers in fresh regions only if the

object has not been copied already, otherwise, the root is directly updated to point to the object’s new ad-

dress. Our post-collection heaps always achieve minimal, sharing-only indirections, as in Definition 4.1.1.

Of course, this compactness comes at the cost of sorting the roots. In practice, root sets are small enough

that the time is worth it for this optimization. Also, the root set is bounded by the program stack size. If

we wanted to further bound sorting time to a constant, we could use a partial sorting algorithm to limit

sorting time, trading it off against having fewer of the young-generation indirection-edges respected by

the order of the root-set traversal.
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4.1.2. Growing partially-written objects. Certain objects encountered by GC-Gibbon’s copying

collector might be only partially written. For example, the mutator could be in the middle of allocating a

tree structure when it triggers a collection, which would cause the young-generation to contain a region

with a tree node having a left field but no right field (yet), as shown in Figure 4.5a. When such a tree

node is promoted to the old-generation, the collector must stop copying after the left field, otherwise it will

keep reading uninitialized data. Thus the collector must be able to detect the ends of such partially-written

objects. Furthermore, once the minor collection is complete the collector must decide where to grow this

object, that is, where to restart construction of the remainder of the object (the right field)—in the young

or in the old-generation.

We use a region’s allocation cursor to detect partially-written objects. LoCal always allocates objects

in a region in order, and, the allocation cursor is the address where the next object would be written. As a

corollary, the allocation cursor is the frontier of all data written within the region, or in other words, the

first byte address in a region that is uninitialized. This is the address where we want the copying to stop.

Before beginning copying, the collector writes a special reserved tag at all live allocation cursors,

effectively cauterizing the regions to mark the end of initialized data, as shown in Figure 4.5b. The copying

routine described in Section 4.1.1 stops copying upon reaching this tag, so as to not read any uninitialized

data. To support this, the mutator spills all live writeable locations to a separate shadow-stack before

starting a collection, and restores their updated addresses after the collection is complete. Regions that

contain a fully constructed value do not have an allocation cursor, as they do not have any writeable

locations in them. Correspondingly, such regions do not undergo cauterization and the live objects within

them are promoted in the standard way.

The design choice of where to restart construction of the remainder of partially-written values is a

tradeoff between (1) requiring a write barrier for new indirection pointers written into the old-generation,

and (2) sacrificing the benefits of pretunuring large and growing regions into the old-generation.

4.1.2.1. Design choice 1: Restarting construction in the young-generation. We would allocate

one young-generation chunk for each partially-written object that was promoted to the old-generation,

and, to continue its construction, update its allocation cursor to point to the beginning of the new chunk.

Next, we would use an end-of-chunk pointer to link the end of the promoted object to the beginning of

this fresh young-generation chunk. These end-of-chunk pointers (pointing from old-generation to young-

generation) would serve as a remembered set of roots for the subsequent minor collection. Crucially, how-

ever, all writes would now always happen in the young-generation. As a result, and since LoCal is a pure
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N L

…

…
Allocation cursor 
shadow-stack

Root Set 
Pointer

Young Gen.

(a) A partially-written tree node in the young-

generation; N is short for Node and L is short for Leaf.

N L ▒▒CT

…

…

Allocation cursor 
shadow-stack

Root Set 
Pointer

Young Gen.

(b)The tree node from Figure 4.5a cauterized by writing

the reserved tag CT. A pointer to the allocation shadow-

stack frame is saved here so that the allocation pointer

can be restored after collection.

Figure 4.5. Partially-written values in the young-generation.

language, this remembered set would remain constant until the subsequent collection. Moreover, all new

indirection pointers would be young-to-old pointers, and could be created without a write barrier (for main-

taining a separate remembered set), making them fairly cheap to create. With this policy, we would use a

remembered set of end-of-chunk pointers that is updated once per collection, instead of a remembered set

of indirection pointers that is maintained by the mutator using a write barrier.

While this policy reduces the cost of indirection pointers, it precludes the collector from perform-

ing pretenuring, which requires that the mutator be able to allocate certain long-lived objects directly in

the old-generation. This would have a significant impact on the performance of programs that allocate

large values, often using a small number of regions. Such programs would exhaust the nursery frequently

and trigger a collection. Moreover, programs that have a large number of regions under construction si-

multaneously could cause an exceptional situation where after the minor collection, a large portion of

the nursery is populated by these new chunks for older promoted values, also increasing the number of

collections (unless the nursery is allowed to grow).

4.1.2.2. Design choice 2: Restarting construction in the old-generation. In GC-Gibbon we use

the dual of the previous choice, namely to continue the construction of partially-written objects in the old-

generation. After an object is promoted, its allocation cursor is updated to point to the frontier of its old-

generation chunk, and no new chunks are created in the nursery. As discussed above, the choice to allow

allocations directly in the old-generation has two consequences: the collector can perform pretenuring, but

pointer creation needs to be protected by a write barrier since the remembered set of indirections pointing
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from old to young-generation can dynamically grow6. While such a write barrier is expensive, we already

amortize its overhead by minimizing the number of indirection pointers. Also, this write barrier is no worse

than what already exists in Gibbon, which has to potentially update reference counts and outsets when

creating indirection pointers. On the plus side, pretenuring is vastly beneficial for programs that allocate

large data structures—exactly the kind of bulk-data-processing programs which are Gibbon’s speciality.

We adopt the following pretenuring policy: the first chunk of every region is allocated in the young

generation, but all subsequent chunks directly start in the old-generation. Thus, after a small prefix, the

remainder of a large structure would be written only once and never copied by GC, similar to Gibbon. The

reasoning behind this policy is that the lifetime of a structure is at least the time required to construct it,

which could be quite large for large structures. Analogous to the accepted wisdom that old objects tend to

live even longer, large regions are more likely to grow even bigger. Also, in our experience typical Gibbon

programs tend to not require many indirection pointers in their representation, thus we try to optimize

the more common case. This design choice has a huge impact on benchmarks evaluated in Table 4.3.

4.1.3. Copying object graphs while maintaining sharing. Of course, an object can have more

than one inbound pointer, and thus tracing GCs must maintain sharing as they relocate data—for example,

a subtree might be shared by two separate tree values. The rootset itself can contain stack variables with

multiple pointers into different parts of the same object, as is the case when the mutator recurs through

multiple levels of a tree (illustrated in Figure 4.4a). Thus, if we failed to detect sharing while copying live

data, all the local variables on the stack could end up with their own completely separate copy of the data7!

Alas, there are several challenges to maintaining sharing given a dense, mostly-serialized heap. First,

there is insufficient space for forwarding pointers inside many objects’ layouts. Second, when the collector

is mid-way through copying an object, and finds a sub-portion of it has already been copied, it needs a

shortcut pointer to “skip over” the already-copied portion and resume copying after it. Shortcut-pointers

created by the mutator cannot be relied upon since they are added on a per-data-constructor, per-field basis.

The simplest solution to both these challenges is to maintain two side-metadata tables during collection:

(1) to store all forwarding information, i.e. a table that maps (start,end) intervals in the young-generation

to their corresponding addresses in the old-generation, and (2) another table to store shortcut pointers
6The remembered set can never shrink, because pointers in the old generation cannot be deleted by the mutator as LoCal is

a pure language.
7Strategies that introduce a bounded amount of data duplication, however, could still be considered as reasonable

optimizations.
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C n IndN 4 E C nN
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E E

Inbound indirection pointer 1 Inbound indirection pointer 2

6
Obj1 Obj2

byte  addrs: 0 1 9 10 11 19 100 101  109 110 111

(a) A young-generation heap with two objects, namely Obj1 and Obj2. Obj1 has one inbound indirection pointer

from an object not pictured here. Obj2 has two inbound indirection pointers: from Obj1 and from another object not

pictured here. N is short for Node and E is short for Empty (a binary search tree constructor).

C n

Young Gen. Old Gen.

C n EN 4 E▒▒▒▒ ▒▒▒▒▒▒FF B

1 byte 1 byte
Inbound indirection pointer 1

C nN E6 ▒▒B

Inbound indirection pointer 2
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0 1 9 10 11 19 100 101  109 110 111 1000 1001  1009 1010 1011byte  addrs:

(b) The young-generation heap from (A) after Obj1 has been evacuated. The collector has been able to add two

forwarding pointers, but one object (E) has been burned without a forwarding pointer.

Figure 4.6. An in-progress evacuation that illustrates how objects are forwarded and

burned.

(skip-over addresses). Unfortunately, using these tables naively is prohibitively expensive and makes the

collector several times slower. Instead, we explore an approach that stores this metadata in the copied

portion of objects where possible and only uses side-metadata tables as a fallback (the slow path), as we

explain next.

4.1.3.1. Forwarding. The forwarding strategy we use follows the principle of: (1) precisely mark-

ing each byte that is copied, while (2) opportunistically including forwarding pointers anywhere in the

bytestream where there is room: including wherever indirection pointers exist, and any data-constructors

with more than a pointer-sized quantity of scalar data. We say that data marked in this manner is either

forwarded, by writing a forwarding pointer into its payload, or, when too small for forwarding, burned,

with each status corresponding to another reserved tag value. We denote these tags B and F. A “B” behaves

like a single byte object, whereas a 9 byte “F addr” object consists of the forwarded tag followed by the new

address of the object which previously lived at the same byte location as the forwarded tag in the nursery.

Before proceeding further, let us recap, and define some terminology:

• An evacuation copies a complete value from the nursery to the old-generation.
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• In doing so, it marks all copied objects (with burned or forwarded tags).

• Only the first chunk within each region can reside within the nursery.

• An evacuation marks an interval of bytes within a nursery chunk. Intervals starting at location

zero are treated differently8.

• An interval consists of one or more indivisible spans, which are sequences of packed data that are

free of indirections before collection begins. These spans are relocated to layout-equivalent spans

of the same size in the old-generation.

When the collector needs to compute the forwarded address of a given tag, it either reads it directly (if

the object was forwardable), or it reads a burned tag and scans to the right looking for a forwarding entry

within the same span. Once such an entry is found, the address of the original tag byte in question can also

be computed via subtraction—as its location relative to the forwarded object in the young-generation and

old-generation will be conserved. This conservation holds because: (1) inlining of data due to the presence

of indirection pointers is the only reason why an object could have different sizes in the young-generation

and the old-generation, and (2) each indirection itself has enough space to store a forwarding pointer after

being evacuated. Thus, the forwarding address of any object occurring in the span of bytes serialized before

an indirection pointer can be computed in a straightforward manner: we use the forwarding pointer that

will be written in place of the old indirection.

Consider a scenario where the young-generation heap is as illustrated in Figure 4.6b and the collector

follows “inbound indirection pointer1” and reaches the burned tag in Obj1 at byte-address 9. It will now

scan to the right and immediately discover a forwarding pointer at byte-address 10. This forwarding pointer

points to the old-generation byte-address 1010. Thus, the collector will compute the forwarded address of

the object at byte-address 9 as: 1010 - (10 - 9) = 1009.

Our goal in designing the sharing-preservation aspect of our collection algorithm is thus to bound

the amount of scanning time necessary to resolve a forwarded address for any tag residing in the young-

generation before collection. Nevertheless, for completeness we need to also introduce a global table as

the place of last resort to store forwarding information. The table maps (start,end) intervals in the young-

generation to their corresponding start locations in the old-generation. The collector may enter in the

middle of a burned interval, so the table needs to be an interval map allowing forwarding-address lookups

keyed on locations anywhere within the forwarded interval.
8If we increased the number of regions in a Gibbon program until every object had its own region, then they would all be

placed at location 0 and resemble object memory allocations in a traditional heap.
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We fall back to the table when we fail to find forwarding information by scanning. We can fail by

hitting the end of the span, which we recognize based on encountering an already-burned tag of the next

span. The collector also exposes a 𝑚𝑎𝑥 𝑠𝑐𝑎𝑛 parameter for the maximum number of burned bytes that

should be traversed in search of a forwarding pointer. By default this is set to the nursery chunk size.

After scanning this many bytes, we fall back to the global table to lookup forwarding information.

Symmetrically, with writing as with reading, after reaching the end of the span or burning𝑚𝑎𝑥 𝑠𝑐𝑎𝑛

bytes, without successfully forwarding, we populate an entry in the table. Because the bound must

hold from any starting location, after successfully forwarding an object, we begin counting again, up to

𝑚𝑎𝑥 𝑠𝑐𝑎𝑛. If we hit an indirection, it is itself a forwardable object. In this case, we also mark the object

downstream from it as start of a new span (in addition to resetting the𝑚𝑎𝑥 𝑠𝑐𝑎𝑛 counter).

4.1.3.2. Skipping-over. The worst-case scenario is pictured below: a tree value with shape only,

containing no scalars, but whose subtree was already copied and burned. This value consists exclusively

of small, non-forwardable objects.

▒▒B▒▒▒▒N N B L…

Even scanning to the end of this interval will fail to turn up a forwarding pointer. Fortunately, the size of

the problematic interval is bounded by the chunk size of the starting region (in the nursery). The reason

is that, otherwise, the interval would contain a chunk redirection pointer to another chunk, which itself

is forwardable. Unfortunately, the landlocked, evacuated value needs to not only have its new forwarding

address resolved (for writing an indirection in the old-generation), but the collector also needs to know

where the burned value ends in the from space, so that it can subsequently continue collection.

To this end, our algorithm, given in Figure 4.1, introduces a second table for storing skip-over addresses.

The table provides a fallback, requiring a slow path for evacuation, just like the table for forwarding point-

ers. Our collector creates a table entry only when it enters a region for the first time at a non-zero location9.

A zero-location tested at runtime with the zero_location? predicate, is simply the first location within each

region. The reason is that values which begin at location zero in a region never need to be skipped over

in this way. Either they are top-level values, or if they are referred to, it is via an indirection, which itself

is trivial to skip over. Furthermore, such location-zero values are always forwardable, because we leave

9In future work, static analysis may assist in ruling out sharing and lessening this obligation.
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enough room in the footer of each region chunk to store a forwarding pointer. Conversely, when the col-

lector stumbles on a transition to burned data in the middle of a chunk, it immediately switches to the

slow-path, performing a table lookup.

To support skipping ahead, the table stores only the end of the entire burned interval, i.e. the end of the

value rooted in the first burned byte. This information is sufficient because the collector can only jump into

the middle of the burned interval by following an indirection there. In that case, forwarding information

is needed but skip-over information is not, because it is trivial to skip-over the value by skipping over

the indirection itself. Adjacent burned intervals are not ambiguous with a single interval, because they

correspond to two logical values, and as such are copied by separate evacuations resulting in separate

entries in the table. In Figure 4.6b, our collector would create an entry in the skip-over table for the object

at byte-address 109, since this object lives at a non-zero location and is burned by following an indirection

pointer. The collector will look up this entry in the table if it evacuates the object starting at byte-address

100.

In conclusion, this subsection introduced a sharing-preservation strategy, which, for completeness,

includes separate tables for slow-path lookups of forwarding and skip-ahead information. We expect that

programs take these slow paths rarely because: (1) heaps generally have a sufficient density of primitive

data (ints, floats, strings) or indirections such that there is a high density of forwardable objects, and (2)

skipping over already-evacuated values is necessary only when the nursery contains sharing. The latter

case generally happens in programs that perform fine-grained allocations of small regions, with a high

percentage of objects occupying location zero of their respective regions.

4.1.4. Write barrier. As mentioned in Section 4.1.2.2, because we allow old-to-young pointers, we

need a write barrier on indirections written to the old generation. Thus on every write of an indirection,

we test the target address to see if it’s in the nursery, and if not we add it to a remembered set. Our write

barrier currently compares the pointer against a (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) range of addresses for the nursery. Further

optimizations to the “is in nursery?” predicate are possible in the future10.

One important optimization we do perform is to prevent redundant chains of indirections, short cir-

cuiting them, in the write-barrier. We perform an additional load to peek at the tag of the target to which

the new indirection points, and if it is an indirection, we keep following it until we find a non-indirection
10For example, we could allocate the nursery in a fixed portion of the virtual address space, so that a test on the pointer is

sufficient for the is-in-nursery test, without any additional loads for (dynamic) nursery bounds.
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tag as the target. As with other aspects of the design, this leverages the immutability of our heap to

maintain the invariant.

4.1.5. Major collection. A region in the old-generation can be freed either by having its reference

count drop to zero, or by a backup major tracing collection. We discuss each strategy in the following.

4.1.5.1. Deferred reference counting. On the one hand, reference counting at the region-level is

extremely effective for large values, because a single reference count is shared by many objects—such

as an entire tree packed into a region. We thereby avoid tracing these large values, achieving the same

benefits as GHC’s Compact Normal Forms [68]. Young objects, on the other hand, are more dispersed,

occupying more distinct regions-per-megabyte—for example when a linked list is allocated with each node

in a different region. As always, the generational approach allows us to take advantage of the difference in

expected lifetime between young and old objects. But there is a further advantage in the mostly-serialized

setting: a copying minor collection also coalesces objects into fewer regions in the old-generation, placing

those objects in order to take full advantage of the serialized representation, eliminating pointers from the

representation rather than just moving and redirecting them.

4.1.5.2. Backup tracing collection. In the introduction, we described how grouping objects into

regions can increase their lifetime. One live object in a region can prevent its reclamation, wasting space

on other, dead objects inside the region. Further, because Gibbon’s reference counting is region-level,

keeping a region alive means keeping downstream regions alive, even if they are pointed to only by now-

dead objects within the region. It is because of these fragmented regions and overapproximated reference

counts that we need to include a backup collection strategy for the old-generation as well.

Our major collection uses the same copying strategy as minor collection—evacuating live objects into

in-order serialized sequences inside fresh, dense regions. It is triggered in the standard way, when the

old-generation size exceeds a threshold. What is unusual, however, is that the combination of region-

reference-counting in the old-generation, with the backup collector, means that the old-generation size

does not monotonically increase. It shrinks when reference counting deallocates regions. We perform

major collection in a stop-the-world fashion, collecting all regions into a small number of output regions

based on the number of roots.

Natural Incrementality. Because all the data in regions is immutable, it would be straightforward to

incrementalize the major collection, which we could address in future work. That is, given the roots for a

particular region, we can evacuate it, and compute an updated set of outbound pointers, either evacuating

79



4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

them recursively, or using that winnowed outset to decrement the reference counts of downstream regions.

For example, if we stop evacuating after copying 𝐾 bytes, the (reduced) outbound pointers keep fewer

downstream regions alive. Thus evacuating a region can free memory not just in that region, but other

regions that are released.

4.2. Implementation Details

We implement our memory management system in the open-source Gibbon compiler11. Our imple-

mentation mainly changes Gibbon’s runtime system (with only a few additions to certain LoCal-to-LoCal

compiler passes). The region creation routine is updated to create a chunk in the young-generation using

bump pointer allocation. A collection is triggered when the young-generation becomes full. Our garbage

collector is implemented in the Rust programming language, primarily because of the memory safety guar-

antees it can provide, along with access to a rich collection of data structures in the standard library. The

Rust code is compiled as a dynamic system library (using crate-type =["cdylib"]) and then linked with

the GC-Gibbon-generated C code. This choice does have a side effect: we lose potential compile-time or

link-time optimization opportunities between the C and Rust code12. We limit the interaction between our

C and Rust code to just one function call, garbage_collect, which reduces any potential slowdowns caused

due to missed optimizations.

Info-table. We use a statically allocated info-table to store the layout information required to evacuate

objects of different types. This table is populated by the program when it starts executing. For each user-

defined datatype in the Gibbon source program, the info-table has an entry of type DatatypeInfo given in

Figure 4.7. The main evacuation loop operates like an interpreter consuming a stream of byte-codes; when

the object being evacuated starts with a tag corresponding to a regular data constructor, (as opposed to a

reserved tag described earlier) it retrieves the necessary layout information from the info-table.

Pointer encoding. At various points during collection, the collector needs to know metadata informa-

tion of a region which houses an object that is the target of a pointer (indirection pointer or end-of-chunk

pointer). If writing an old-to-old indirection pointer, the target region’s reference count needs to change.

If promoting a chunk that ends with a link to a pretenured chunk, the target region’s set of chunks needs

11https://github.com/iu-parfunc/gibbon/
12Since we use GCC to compile the generated C programs because it usually produces more efficient code than Clang in our

experience, especially for the switch-heavy tree traversal programs. Besides, getting meaningful link-time optimizations between

code compiled using Clang and Rust is not trivial.
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type InfoTable = Vec <DatatypeInfo >;

enum DatatypeInfo {

Scalar(usize),

Packed(Vec <DataconInfo >),

}

struct DataconInfo {

scalar_bytes: usize , / / Bytes before the first packed field.

num_shortcut: usize , / / Number of shortcut pointer fields.

field_tys: Vec <u32 >, / / Field types of packed fields.

}

Figure 4.7. The representation of GC-Gibbon’s info-table in the Rust runtime system.

to be updated. This metadata information can be accessed via the footer of the target chunk. To enable

access to the footer, we use a 64 bit pointer to store both: (1) the address of the target object, and (2) the

offset from there to the target chunk’s footer. The 16 high-order reserved bits are used to store the offset

information. As a consequence, the maximum chunk size that can be allocated is bound at 65K bytes (216).

Reordering tag allocations. Even though allocations in LoCal happen in order, its formalism requires

that a data constructor tag be written after all its fields are. That’s because writing the tag indicates that a

particular LoCal value is fully written, and the type-system ensures certain invariants are maintained by

the fields. This, however, creates a problem for our collector which might need to copy a value while it is

still under-construction(Section 4.1.2). Without the tag present at the beginning of an object, the collector

cannot infer what kind of an object it is copying. We bypass this by reordering the writes such that a data

constructor tag always gets written before any of its fields. Not only does this help the collector, it also

makes the mutator slightly more efficient.

Bounding region size. A performance anti-pattern with previous versions of Gibbon was to allocate

a sizeable region of the default size, typically at least 1K, and then write only a single constant-sized object

to it, such as one cell of a linked list. This wastes a lot of memory, and in GC-Gibbon, can also cause

many more collections to occur. It is therefore profitable to identify certain regions with statically bounded

maximum size. We add such a static analysis on Gibbon’s LoCal intermediate language. When the compiler
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backend generates code for letregion constructs, it overrides the default size with the static bound if it is

smaller. Implementing this requires analyzing all the locations that allocate to a particular region, and then

inferring the sizes of objects written to these locations. The size of primitive types such as ints and floats

is known a priori. Expressions that allocate a variably-sized serialized value (for example, using recursion)

are inferred to have an unbounded size.

4.3. Evaluation

In this section we evaluate our memory management system using a variety of benchmarks taken

from previous literature, and two additional benchmarks—reverse and treeUpdate—that stress the worse-

case scenarios for our implementation. Besides prior Gibbon (referred to as Legacy-Gibbon in the rest of

this section), we compare the performance of our implementation to GHC13, which is especially optimized

to run functional programs which allocate lots of small objects, and Java, which has a highly optimized and

mature garbage collector. For our experiments, we use a single-socket Intel E5-2699 18 core machine with

64GB of memory and running Ubuntu 18.04. We compile the C programs generated by our implementa-

tion using GCC 7.5.0 with all optimizations enabled (option -O3). For comparing against Legacy-Gibbon,

we use its version 0.2 compiled from source. To ensure an apples-to-apples comparison, we port our

bounding-region-size optimization (Section 4.2) to Legacy-Gibbon. For GHC, we use GHC 9.0.2, with op-

tions -threaded -O2. We use GHC’s default collector [39] and control the size of its young-generation with

the run-time option +RTS -A <SIZE> -RTS. For Java, we use OpenJDK 17.0.1 with its default G1 collector [21]

and control the size of its young-generation with the option -XX:NewSize=<SIZE>. Each reported measure-

ment is the mean of 10 runs, where each run records the wall-clock time required to run a benchmark. For

Java, we do two additional runs to warm up the JVM but don’t count their run time when computing the

mean. We oberved low variance in all our measurements and therefore do not report it separately.

Benchmarks. We consider the following benchmarks for our evaluation. For GHC, we use strict

datatypes in benchmarks, which generally offers the same or better performance, but avoids performance

complications due to laziness. All programs use the same algorithms14 and datatypes, and are run with the

same inputs. For GHC and Legacy-Gibbon, we hold the size of the young-generation constant at 4M. For

Java, the young-generation starts with a size of 4M, but is allowed to grow if desired by the collector.

13https://www.haskell.org/ghc/
14To workaround a stackoverflow error, we use for loops instead of recursion for the Java implementation of reverse and

treeUpdate.
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• reverse: This is the standard accumulator style list-reverse program shown in Figure 2.7a; it

reverses a list containing 8M integers. The Java implementation is defined using a while loop

rather than a recursive function.

• treeUpdate: This is the complete version of the program given in Figure 2.8a. It starts with a

very small search tree and repeatedly inserts and deletes numbers in it. The numbers are chosen

from small range (0-512) to keep the size of the tree more or less constant, and the tree is updated

5M times. The Java implementation encodes the outer “update” loop as an actual while loop, but

insert and delete are defined using recursion in the standard way.

• coins: This benchmark is taken from GHC’s NoFib15 benchmark suite. It computes the number of

ways in which a certain amount of money can be paid by using the given set of coins. The input

set of coins and their quantities are [(250,55),(100,88),(25,88),(10,99), (5,122),(1,177)], and the

amount to be paid is 999.

• lcss: This benchmark computes the longest-common-substring using Hirschberg’s algorithm.

Our implementation is taken from GHC’s NoFib benchmark suite. We provide as input two strings

of length 3100 and 3000, respectively, such that the result has length 2100.

• power: This benchmark [42] computes 20 elements of the power series

(ts = 1 :+: tsˆ2), which is shown here assuming lazy evaluation. We use a slightly modified

implementation that is suitable for a strict language.

• buildKdTree and countCorr and allNearest: buildKDTree constructs a kd-tree [25] containing

1M 3-d points in the Plummer distribution. countCorr takes as input a kd-tree and counts the

number of correlated (within a distance of 100 units) points for all 1M 3-d points. allNearest

computes the nearest neighbors of all 1M 3-d points.

• barnesHut: Uses a quad tree to run an nbody simulation over 1M 2-d point-masses distributed

uniformly within a square.

• constFold: This benchmark is taken from [34] and implements constant folding for a language

that supports integer arithmetic. It is run on synthetic syntax-tree which is a balanced binary tree

of depth 26.

• evacSharedTree: This is a synthetic benchmark designed to stress the sharing-preservation as-

pect of our collection algorithm. It allocates a large balanced binary tree with maximum sharing

and releases it almost immediately, and then triggers a major collection. Only the time required for

15https://gitlab.haskell.org/ghc/nofib
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Table 4.1. Run times in seconds of benchmarks run with different GC configurations (ex-

plained in Section 4.3).

Benchmark Default NoBurn NoCompact Simple- NoBurn NoCompact

Barrier +SB +SB

reverse 0.49 0.43 11.8 0.49 0.44 11.9

treeUpdate 0.77 0.75 0.88 2.30 1.20 12.1

coins 4.34 4.32 4.31 10.45 10.3 10.4

lcss 0.51 0.53 0.54 0.52 0.52 0.53

power 1.40 1.34 1.36 1.38 1.40 1.44

evacSharedTree 2.53e-05 2.44 1.33e-04 3.25e-05 2.43 1.31e-04

the major collection is measured, to demonstrate the performance impact of sharing-preservation.

Maximum sharing in the allocated tree is achieved as follows: for each interior node at height h, a

single tree with height h-1 is constructed and is used as the left and the right subtree of this node.

In GC-Gibbon and Legacy-Gibbon, this tree with height h-1 will be allocated in a separate region

and two indirections will be written to construct the node with height h. This benchmark is run

on tree of height 25.

These benchmarks are roughly divided into two sets: (1) those that perform many out-of-order and small-

allocations (reverse, treeUpdate, coins, lcss, power), where the mostly-serialized approach is weakest, and (2)

those that allocate or traverse a large data structure (buildKdTree, countCorr, allNearest, barnesHut, constFold),

where the mostly-serialized approach shines.

Evaluating GC design choices. To evaluate the effects of the design choices we made, we run the

benchmarks that stress the collector in six different modes, each of which toggles a specific choice:

• Default: The default configuration follows the design described in Section 4.1, with all optimiza-

tions enabled.

• NoBurn: In this mode we disable the forwarding pointer mechanism described in Section 4.1.3.

Thus, every shared value is copied multiple times. A benefit of this is that writing forwarding

pointers and burning data, and maintaing side-metadata tables is no longer required.
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• NoCompact: In this mode we disable compaction (pointer elimination). For each indirection

pointer encountered during evacuation, if the target object is not already copied, it is put into a

fresh region and a new indirection pointing to this fresh region is created.

• SimpleBarrier: In this mode we disable the optimization that eliminates redundant chains of in-

directions (Section 4.1.4). This makes the write-barrier more efficient by reducing the number of

memory loads it performs, but makes the collection more expensive because of the overheads as-

sociated with evacuating indirection-heavy heaps (due to forwarding, maintaining side-metadata

tables, etc.).

• NoBurn+SB: This mode is a combination of NoBurn and SimpleBarrier. We disable forwarding

pointers and the indirection-chain-elimination optimization.

• NoCompact+SB: This mode is a combination of NoCompact and SimpleBarrier. We disable com-

paction (pointer elimination) and the indirection-chain-elimination optimization.

All of these modes (except SimpleBarrier) are configuration flags provided to the collector. SimpleBarrier

requires recompiling the mutator since the write-barrier is inlined into the mutator at compile time.

The results are given in Table 4.1. The choices made by our collector (column Default) perform

well across all benchmarks. For all other modes, there is at least one benchmark which performs poorly.

evacSharedTree has maximum sharing and is therefore a pathological worst-case for the NoBurn mode, which

disables sharing-preservation during copying. In this case the collector copies an exponential amount of

data—335MB versus 14KB in Default mode! Even though this is a worst-case scenario, it’s quite easy to run

into this sort of copying behavior with sharing disabled in the collector. With respect to NoCompact mode,

reverse is 24× times slower in this configuration since it has the highest number of indirections among

these benchmarks—8M, one for each cons-cell. The effectiveness of the indirection-chain-eliminating

write-barrier is demonstrated by treeUpdate and coins, both of which create long indirection chains and

are 2-3× slower in this mode. The performance of treeUpdate in NoBurn+SB mode is peculiar. On one hand,

the collector handles a large number of indirections, but because sharing is disabled, it saves time by not

having to maintain side-metadata tables. For instance, in SimpleBarrier mode the skip-over table contains

18K elements on average, versus 0 in NoBurn+SB. treeUpdate performs poorly (15× slower) in NoCompact+SB

mode due to the overhead of side-metadata management and excessive old-generation allocations.

Comparison to other systems. Tables 4.2 and 4.3 show the results of comparing performance of our

system to Legacy-Gibbon, GHC, and Java. For small and out-of-order allocation benchmarks (Table 4.2),

GC-Gibbon benefits from its fast bump-allocated young-generation, whereas Legacy-Gibbon shows the
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Table 4.2. Run times of out-of-order and small-allocation benchmarks in seconds.

GC-Gibbon Legacy-Gibbon GHC Java

Benchmark 𝑇gcgib 𝑇oldgib 𝑇oldgib/𝑇gcgib 𝑇ghc 𝑇ghc/𝑇gcgib 𝑇java 𝑇java/𝑇gcgib

reverse 0.49 1.46 2.98 0.42 0.86 0.53 1.08

treeUpdate 0.77 4.17 5.41 0.37 0.48 0.56 0.73

coins 4.34 35.5 8.18 1.21 0.28 3.63 0.84

lcss 0.51 0.30 0.59 0.45 0.88 0.72 1.41

power 1.40 8.07 5.76 0.28 0.20 2.36 1.68

geomean - - 3.39× - 0.46× - 1.09×

Table 4.3. Run times of in-order allocation and bulk-traversal benchmarks in seconds.

GC-Gibbon Legacy-Gibbon GHC Java

Benchmark 𝑇gcgib 𝑇oldgib 𝑇oldgib/𝑇gcgib 𝑇ghc 𝑇ghc/𝑇gcgib 𝑇java 𝑇java/𝑇gcgib

buildKdTree 2.67 2.53 0.95 7.78 2.91 4.48 1.68

countCorr 1.77 1.77 1.00 3.00 1.7 4.47 2.52

allNearest 0.71 0.80 1.13 1.46 2.06 1.00 1.41

barnesHut 3.54 3.40 0.96 5.83 1.65 2.40 0.68

constFold 1.38 1.50 1.09 4.12 2.98 2.56 1.85

geomean - - 1.02× - 2.19× - 1.5×

overheads of malloc-based region allocations. In the case of reverse, both Gibbon versions need to allo-

cate a new region per input element, thus, 8M regions are allocated in this instance. But despite this very

high rate region allocation, GC-Gibbon is 7% faster than Java and only 14% slower than GHC. The lcss

benchmark is surprisingly fast with Legacy-Gibbon. According to our initial observations, lcss’ alloca-

tion pattern seems to naturally have a stack-like behavior and thus benefits from Legacy-Gibbon’s region

based memory management. While we have achieved significant performance improvements compared

to Legacy-Gibbon, some benchmarks do not perform as well as we might hope. Without the years of

optimizations in these competing systems, since our collector is new there is much room improvement.
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GC-Gibbon Legacy-Gibbon GHC Java
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Figure 4.8. Run times of benchmarks using inputs of various sizes, the young-generation

size is held constant at 4M. The red line marks the input used for measurements reported

in Table 4.2.

Legacy-Gibbon has a home-turf advantage on the in-order allocation and bulk-traversal benchmarks

(Table 4.3). As the results show, GC-Gibbon does not degrade their performance. The pretenuring op-

timization described in Section 4.1.2 is key to this. The slowdowns observed here are primarily because

GC-Gibbon’s pointer encoding mechanism, which puts an upper bound on the largest chunk that it can

allocate, namely 65K, unlike Legacy-Gibbon which sets this upper bound to 1GB. Both GC-Gibbon and

Legacy-Gibbon, however, outperforms GHC and Java on these benchmarks. Java performs exceptionally

well on barnesHut.

For small allocations, our system is 3.79×, 0.46×, and 1.09× geomean faster than Legacy-Gibbon, GHC,

and Java, respectively. For bulk tree-traversals, our geomean speedup is 1.02×, 2.19× and 1.5×. Overall,

these results show that GC-Gibbon offers significant performance improvements compared to Legacy-

Gibbon on small and out-of-order allocation benchmarks, without degrading the performance on bulk-

traversal and allocation benchmarks. Legacy-Gibbon is prohibitively slow on certain workloads, thereby

discounting its use entirely if any part of a big application has an allocation pattern like coins, power or
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Figure 4.9. Run times of benchmarks using young-generations of various sizes. The red

line marks the nursery size used for measurements reported in Table 4.2, 4M.

treeUpdate as an example. For these benchmarks, GHC is 29×, 28× and 11× faster than Legacy-Gibbon,

respectively. Overall, GC-Gibbon shows that general-purpose language runtimes powered by (mostly)

serialized data representations can support efficient tree traversals, as in Legacy-Gibbon, and perform well

in the setting of general-purpose functional programming, with a comprehensive solution for garbage

collection.

Parameter sweeps. In this section we discuss the results of three parameter sweeps for small out-

of-order allocation benchmarks that stress the collector. Figure 4.8 shows the run times of benchmarks

using inputs of various sizes, and the young-generation size is held constant at 4M. All the variants have

similar behavior, with Legacy-Gibbon being the slowest in most cases. Figure 4.9 shows the run times

of benchmarks using different young-generation sizes. This shows the expected tradeoff between space

and time; the wall-clock time gets better as the young-generation gets bigger, due to fewer collections.

Figure 4.10 shows the run times of benchmarks using different initial chunk sizes for GC-Gibbon. Using

bigger initial chunks, and therefore growing the overall region at a faster rate, causes more collections
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Figure 4.10. Run times of benchmarks using initial chunks of varying sizes. Our region

size inference analysis (Section 4.2) causes GC-Gibbon to allocate constant-sized regions

in the main workoad of reverse and coins, thus their run times are constant. We report the

measurements after disabling this optimization as “GC-Gibbon (region size not inferred)”.

to occur since the nursery fills up faster. It also leads to inefficient space usage since many of the larger

chunks will be mostly empty.

89



Accelerating Haskell tree-traversals: from Gibbon to GHC

Presently, Gibbon is a standalone whole-program compiler for a small, strict subset of Haskell. But this

is not how we envision using it in the long term. We would instead like Gibbon to be an accelerator that

can be used with GHC. That is, Gibbon and its serialized data representations could be used to optimize

some portion of a bigger application that is compiled and run using GHC. This approach has two primary

benefits:

• It would give Gibbon programmers access to the wider Haskell library ecosystem and many

Haskell features that Gibbon does not yet support in its front-end source language. This would

enable writing a wide variety of programs that are currently not possible.

• It would significantly lower the barrier to Gibbon’s adoption and make it a practical tool that

could be used in many different scenarios.

To accomplish this goal, we implemented a proof-of-concept library named gibbon-plugin that can be in-

cluded in a Haskell application in the standard way1 and that can be used in a regular Haskell program

compiled with GHC. With gibbon-plugin, users can “mark” certain Haskell expressions to be compiled by

Gibbon, and most importantly, these Gibbon-compiled expressions can be interspersed and used in the

overall program easily.

gibbon-plugin uses GHC’s plugin mechanism to integrate Gibbon with GHC. A GHC plugin allows one

to edit GHC’s usual compilation pipeline. Among other things, it lets one inspect and modify a program

being compiled. gibbon-plugin defines a plugin that works as follows: (1) it walks over the Haskell module

being compiled and collects expressions that are marked to be compiled using Gibbon, (2) it then uses the

existing Gibbon compiler to generate a new versions of these expressions that will operate on serialized

representations, and (3) sets things up so that the broader Haskell program can use these new Gibbon-

compiled expressions. Programmers need to pass a compile time flag to GHC, -fplugin=GibbonPlugin, to use

this plugin. While this overall strategy is straightforward, there are several details to get right so that the

resulting system is easy to use and performs well:

1Using Haskell package managers like Cabal or Stack.
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• Gibbon is a whole-program compiler whereas GHC is not. How to bridge this gap?

We generate a whole program for each expression that is marked for Gibbon-compilation. Essen-

tially, we collect all functions transitively reachable from the marked expression, crossing module

and library boundaries if required, and compile this transitive closure as a “whole-program” using

Gibbon.

• gibbon-plugin’s operates on GHC’s intermediate language called Core [22], which is a variant of

System FC [58]. Can we translate Core programs into Gibbon’s frontend language?

We can translate most Core programs into Gibbon’s frontend language. Certain Core expressions,

however, have no equivalent Gibbon counterpart—for example, coercions. Our implementation

aborts compilation upon encountering such an expression. We plan to find a graceful way to

handle this situation in the future.

• At the boundary between Haskell-compiled code and Gibbon-compiled code, we will need to con-

vert values between the Haskell representation and the Gibbon representation. How would this

work and can we accomplish this easily for values of new user-defined datatypes?

We essentially need to serialize and deserialize values to convert them to and from the Gibbon

representation. Our approach here is very similar to the existing binary2 library. Similar to this

library, we can use GHC.Generics to automate this process for user-defined datatypes (keep pro-

grammers from writing boilerplate code), but our implementation doesn’t do this yet.

• How would memory management work in this setting? Can we teach GHC’s collector about se-

rialized values, or, do we have to keep Gibbon’s collector around and make the two collectors

cooperate?

Memory management is a crucial component for making this system complete, but our imple-

mentation doesn’t handle it yet. But we think that we’ll need to keep Gibbon’s collector around,

given the complexity of collecting serialized values as shown in Chapter 4, and devise a cooper-

ative collection strategy.

Next, there are some design choices to be made:

• At what granularity should programmers mark things for Gibbon-compilation: at the level of a

complete Haskell module or top-level expressions or any expression?

gibbon-plugin allows programmers can mark any expression for Gibbon-compilation.

2Binary serialisation for Haskell values using lazy ByteStrings: https://hackage.haskell.org/package/binary
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• Should we use the existing Gibbon backend that generates C code or should we develop a new

backend that can generate Core code? This question boils down to whether we want Gibbon

primitives such as “allocate a region”, “write a number”, “read a number” etc. to be implemented

in C or in Haskell.

We use Gibbon’s existing C backend. Our initial experiments showed that Gibbon primitives

implemented in Haskell are slower compared to C. Thus, we generate C code for each expression

marked for Gibbon-compilation, compile this C code to object code (.o) using GCC, link this object

code with GHC compiled code, and use functions in this object code using Haskell’s Foreign

Function Interface (FFI).

5.1. Design and Implementation

In the remainder of this section, we describe gibbon-plugin’s components in turn.

5.1.1. API and performance evaluation. The API we designed for using gibbon-plugin in a Haskell

program is given in Figure 5.1. A value of type a when converted to use Gibbon’s serialized data represen-

tation has the type Packed a. The typeclass Packable provides functions that can convert a value from the

Haskell representation to the Gibbon representation (toPacked) and vice versa (fromPacked). Programmers

need to define instances of this typeclass for datatypes that cross the boundary between Haskell-compiled

code and Gibbon-compiled code. gibbon-plugin can help here by providing a Generic instance for Packable,

but it doesn’t do this yet. Next, liftPacked can be used in a program to mark expressions that should

be compiled using Gibbon. liftPacked takes an expression of type (a → b) and returns an expression of

type (Packed a → Packed b). Thus, it returns an optimized version of the expression which will operate on

serialized values.

A simple program that uses this API is given in Figure 5.3. Here we’re using Gibbon to optimize the

performance of the expression named buildsum which is defined to be (𝜆n → sumTree (buildTree n)). We

define fastbuildsum as (liftPacked buildsum). In this case, gibbon-plugin will essentially generate a new

version of the function buildsum, and correspondingly buildTree and sumTree as well, and then update the

definition of fastbuildsum to use this new version of buildsum via the C FFI. We will explain how this works

next. Before that we present some preliminary performance evaluation results given in Figure 5.2.

Column “GHC” shows the run time of a benchmark compiled with GHC using its standard pointer-

based representation. Column “GHC+Gibbon” shows the run time of a benchmark compiled with GHC

and optimized using gibbon-plugin’s liftPacked. Column “Standalone Gibbon” shows the run time of a
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−− Packed (serialized) representation of the value of type ’a’.

data Packed a

−− A typeclass to convert values between the Haskell representation and the Gibbon representation.

class Packable a where

toPacked :: a → Packed a

fromPacked :: Packed a → a

−− Lift an expression to operate on packed representation.

liftPacked :: (a → b) → (Packed a → Packed b)

Figure 5.1. gibbon-plugin’s API to use Gibbon as an accelerator in a Haskell program.

Benchmark GHC GHC+Gibbon Standalone Gibbon

buildsum 1.27 0.85 0.71

Figure 5.2. Run time of benchmarks in seconds.

benchmark compiled with standalone Gibbon compiler. buildsum compiled using GHC+Gibbon is 1.5×

faster compared to the same program compiled using just GHC and has comparable run time to Standalone

Gibbon. While we evaluated gibbon-plugin using just one benchmark, it still shows the promise of this

approach. We plan to work on expanding the performance evaluation in the future.

5.1.2. Fetching the transitive closure of an expression. There is a mismatch between Gibbon’s

and GHC’s compilation methodology: Gibbon is a whole-program compiler, whereas GHC compiles one

module at a time. Thus, if the marked expression (the expression given as argument to liftPacked) uses

a function from a different module, Gibbon needs access to its definition but GHC does not. In GHC,

a function’s definition is available across modules only if it is inlineable—that is, if it is marked with an

INLINE or an INLINEABLE pragma or if GHC decides to inline it on its own. To work around this, we require

programmers to compile their application and all its dependencies using the flag -fexpose-all-unfoldings.

This can be accomplished by specifying the following in a cabal.project file:

package *

ghc -options: -fexpose -all -unfoldings
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module BuildSum where

−− Import the Gibbon library.

import Gibbon ( liftPacked , Packed )

data Tree = Leaf Int | Node Tree Tree

buildTree :: Int → Tree

buildTree 0 = Leaf 1

buildTree n = Node (buildTree (n-1)) (buildTree (n-1))

sumTree :: Tree → Int

sumTree (Leaf n) = n

sumTree (Node l r) = (sumTree l) + (sumTree r)

buildsum :: Int → Int

buildsum n = sumTree (buildTree n)

fastbuildsum :: Packed Int → Packed Int

fastbuildsum = liftPacked buildsum

main = do

time1 ← measureRunTime buildsum 25

time2 ← measureRunTime fastbuildsum (toPacked 25)

print (time1 , time2)

Figure 5.3. A simple Haskell program that uses Gibbon as an accelerator via liftPacked.

This ensures that all function definitions are accessible across module and library boundaries. There is one

caveat. This flag does not apply to GHC’s standard library, base, because it’ll essentially require recompiling

base which is not straightforward. Because of this limitation, if a marked expression uses a function from

base that is not inlineable, our current implementation will fail to process it. In the future, we can provide

a new version of base that is compiled with the required flag.
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To satisfy Gibbon’s whole-program constraint, we collect all functions transitively reachable from the

marked expression, crossing module and library boundaries if required, and compile this transitive closure

as a “whole-program” using Gibbon. Collecting the transitive closure of an expression can be accomplished

by using the usual GHC API (functions from the ghc library) that is available for use in a GHC plugin.

5.1.3. Translating Core programs to Gibbon’s frontend language. Gibbon’s frontend language,

L0, is a pure higher-order functional language with support for parametric polymorphism, algebraic data

types, and pattern matching. It is very similar to Core except the following. Core has both recursive and

non-recursive let bindings, whereas L0 only has non-recursive let bindings. Next, Core and its pattern

matching implementation support a default wildcard pattern that matches any value, but L0 does not have

this feature. These differences can be overcome by various program transformations.

Some differences, however, between Core and L0 are incompatible. Haskell, and therefore Core, has

a much more advanced type system than L0 and some of these type system features also bleed into the

expression language. For example, Core has some expressions that L0 has no match for, such as type ap-

plications, casts, and coercions. If gibbon-plugin encounters any of these expressions, it aborts compilation

all together. In the future, we plan to find a graceful way to handle these.

While this is clearly a limitation of gibbon-plugin, it might not be a major roadblock to its adoption in

practice. In our experience, high performance Haskell code often does not use advanced type system fea-

tures and this is the kind of code that Gibbon will likely be used to optimize. Moreover, since programmers

can mark expressions using liftPacked in a piecemeal fashion, gibbon-plugin’s limitations will only apply

to a (possibly small) portion of the overall Haskell application. The other portion of the application (which

is not reachable via the marked expression) is free to use any and all Haskell features that are required.

5.1.4. Tying everything together using FFI. For the program given in Figure 5.3, gibbon-plugin

compiles buildsum, buildTree, and sumTree using Gibbon, specifically it’s C backend. As a result, we get an

object file (.o) which exports the following functions:

$ nm buildsum.o

c_buildTree

c_sumTree

c_buildsum

These functions operate on serialized representations of values, namely a serialized tree in this case. To use

these functions in the Haskell program, gibbon-plugin will generate Core code equivalent to the following
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Haskell code:

foreign import ccall unsafe "c_buildsum"

c_fastbuildsum :: CInt → CInt

fastbuildsum :: Int → Int

fastbuildsum = fromPacked . c_fastbuildsum . toPacked

First, it has added an FFI binding for the c_buildsum function. The type of the function is CInt → CInt since

CInt is the Haskell type representing the C int type. Second, the definition of fastbuildsum has been updated

to use this new FFI binding. This is a fairly mechanical translation, the only interesting part here is the use

of fromPacked and toPacked. Any types that the cross the boundary between the Haskell-compiled code and

Gibbon-compiled code have to be encoded and decoded into an appropriate representation.

Converting values between representations will usually be slow (except for scalars such as numbers)

and should be avoided as much as possible. It’s more efficient to use liftPacked to lift a big computation,

rather than lifting small pieces of work. In the latter case, the overhead of converting values between

representations might outweigh the benefits of using serialized representations. Much like parallelism,

the granularity of liftPacked must be controlled. Also, our current implementation doesn’t offer a way

for the Gibbon-compiled code to call back into Haskell-compiled code, the FFI bindings that are generated

only go one way. This is something we plan to investigate in the future.

5.2. Future Work

We have only taken the first step towards developing an efficient way of using Gibbon as an accelerator

in a Haskell program. There is ample opportunity for further investigation in this area. In particular, the

following parts of gibbon-plugin could be significantly improved:

• We need to provide an easy way to derive Packable for user-defined datatypes without having

to write a lot of boilerplate code. This is something that can be accomplished with the help of

GHC.Generics and we plan to work on it.

• Memory management isn’t handled in the current implementation at all. This is important for it

to be a complete solution.

• There’s much work to be done to make the plugin more robust, the current implementation is still

a proof-of-concept.
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Related Work

The most closely related work to this dissertation is, of course, Vollmer et al.’s Gibbon compiler [66]

and LoCal [65], which was summarized in Chapter 2. As discussed there, Vollmer et al.’s treatment only

provided sequential semantics and a simple reference counting based memory management system which

is only suitable for processing bulk tree-like data. First, we extend those semantics to incorporate paral-

lelism and present Parallel Gibbon, an implementation of the new parallel semantics whose performance

exceeds the performance of the best existing parallel functional compilers. Second, we present GC-Gibbon

that uses a much more sohisticated memory management scheme based on a generational garbage col-

lector, which can handle a variety of workloads efficiently. It retains Gibbon’s strong performance on

tree-traversals where the serialized data approach is most effective and also achieves reasonable perfor-

mance on out-of-order small allocations where the approach is weakest, more closely resembling mature

compilers and runtime systems that have been heavily optimized for such programs, using traditional

memory representations. In the following, we outline other prior research on serialized data structures,

parallelism, and garbage collection, and how Parallel Gibbon and GC-Gibbon relate to them.

6.1. Data Processing and Layout Control

Earlier precursors to Gibbon include [47], which observed the relationship between an (ordered) exten-

sion of linear type theory, and the ability to stipulate data layout. But this work considered only fixed-sized

types, not recursive types of unbounded size. It inspired later work, [33], which made the connection be-

tween a type system that could enforce data is consumed in left-to-right order, and the ability to convert

tree-traversal programs into stream-processing programs (which is what Gibbon does). Gibbon is struc-

tured differently, taking unannotated programs as input and having to accept any program irrespective

of data access order (instead changing the control flow and data representation both as free variables to

create an efficient combination).
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6.2. Serialized Data and Parallelism

Parallel Gibbon is related to several HPC approaches to serializing recursive trees into flat buffers for

efficient traversal [26, 44, 38]. Notably, these approaches must maintain the ability to access the serial-

ized trees in parallel, despite the elimination of pointers internal to the data structure, or risk sacrificing

their performance goals. The key distinction that makes enabling parallelism in the HPC setting “easier”

than in our setting is that these approaches are application-specific. The serialized layouts are tuned for

trees whose structure and size are known prior to serialization, and the applications that consume these

trees are specially-written to deal with the application-specific serialization strategies. Hence, offsets are

either manually included in the necessary locations, or are not necessary as tree sizes can be inferred from

application-specific information.

Work on more general approaches for packing recursive structures into buffers includes Cap’N Proto

[64] and FlatBuffers [27], which attempt to unify on-disk and in-memory representations of data struc-

tures, and Compact Normal Form (CNF) [68]. Cap’N Proto, is designed to eliminate encoding/decoding by

standardizing on a new binary format for use in memory as well on disk/network. Compact Normal Forms

(CNF) is a feature provided by the Glasgow Haskell Compiler since version 8.2. The idea is that any purely

functional value, once fully evaluated, can be compacted into its own region of the heap by capturing a

transitive closure of its reachable data. The invariant maintained here is that all pointers inside the CNF

must only point to other objects within the CNF, and outside it. After compaction, this heap can be stored

externally and loaded back into the heap later.

Neither of these approaches have the same design goals as LoCal and LoCalpar: Cap’N Proto, Flat-

Buffers, and CNF preserve internal pointers in their representations, eliding the problem of parallel access

by invariably paying the cost (in memory consumption and lost spatial locality) of maintaining those

pointers. We note that Vollmer et al. showed that LoCal’s representations enable faster sequential traver-

sal than two of those approaches [65], and Section 3.4 shows that our approach is comparable in sequential

performance to LoCal despite also supporting parallelism.

There is a long line of work on flattening and nested data parallelism, where parallel computations

over irregular structures are flattened to operate over dense structures [13, 32, 8]. These projects do not,

however, have the same goals as ours. They focus on array data, generating parallel code, and data lay-

outs that promote data parallel access to the elements of the structure, rather than selectively trading off

between parallel access to structures and efficient sequential access.
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6.3. Region-based Memory Management

The main motivation behind region-based memory management[62] was to bring some of the benefits

of stack-based memory management (a technique common in imperative languages like Pascal and Algol)

to higher-order functional languages (primarily Standard ML). In this context, “region types” are a feature

of a type system that tracks what region of memory a value is allocated into, with the goal of safely de-

allocating all values in that region once it goes out of scope.

Often closely associated with region types is region inference [10, 59], a technique for taking an or-

dinary call-by-value program and inferring the region bindings and annotations such that all memory is

safely allocated and deallocated into regions (essentially using region types in a typed intermediate lan-

guage). This was used in the ML-Kit compiler, allowing it to compile arbitrary SML programs without the

need for a general-purpose garbage collector, but practical problems with region inference prevented it

from catching on in mainstream language implementations [60].

One of the issues with region-based memory management is that some common patterns of functional

programming end up causing memory leaks [60]. One such case is iteration via tail recursive functions.

Each iteration will accumulate allocations in a region, even if the allocations from the previous iteration are

no longer live and ideally should be discarded. In the worst case, a program may even end up accumulating

data in a “global region” that spans the lifetime of the whole program, thus ensuring that the memory will

not be de-allocated promptly. Various attempts at extensions or optimizations to region systems have been

proposed to address this, such as storage mode analysis, where a compiler inserts special instructions to

reset the allocation pointer in a region if it can prove the region contains no live values, essentially allowing

its contents to be overwritten [61].

A related limitation of region-based memory management, and of region-based systems in general,

is the requirement that regions have last-in-first-out (LIFO) lifetimes which follow the block structure of

a language [10]. Essentially, as long as regions are introduced with let region, programs are limited to

“static” regions, or regions that are introduced for the static scope of the let binding and eliminated after

leaving that static scope. In other words, memory for the region r is allocated when control enters the

letregion r in e syntactic form, r is live for the execution of e, then r is de-allocated when control leaves

the letregion form.
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6.4. Garbage Collection

In [23] Elsman et al. explored combining regions and garbage collection in the MLKit system. The

combination proved less fruitful in this system because most of the memory was still reclaimed by the

region mechanism instead of the generational collector. Moreover, MLKit primarily uses regions to get the

benefits of stack-based memory management, but each object within a region is still traditional in every

other way and all pointers among objects are retained. Thus, its collector does not face the challenges of

copying serialized partially-written objects, and correspondingly, it also doesn’t benefit from the resulting

compaction.

The literature on traditional garbage collection not only includes much work on tracing and reference

counting independently, but also in combination. Our proposed collector is similar to Ulterior reference

counting [11] which also has a copying young-generation and a reference counting old-generation. This

work was further extended in [52], which uses an efficient heap structure named Immix [12] and refer-

ence counting, and also includes a backup tracing collector. The recent LXR collector [69] further builds

on this. It is also based on the Immix heap and uses a combination of tracing and reference counting.

It brings together several optimizations and heuristics, and introduces an efficient remembered set and

a low-overhead write barrier to make reference counting efficient, and is able to reclaim most memory

without any copying. There is ample opportunity to improve our reference counting collector using these

techniques.

Parallel GC. Efficient automatic memory management is a longstanding challenge for parallel func-

tional languages. There is work proposing a split-heap collector that can handle a parallel lazy lan-

guage [41] and a strict one [56], and there is work on a scalable, concurrent collector [63]. A promising

new line of work explores scalable garbage collection by structuring the heap in a hierarchy of heaps,

enabling task-private collections [28]. Recent work has extended the hierarchical heaps model for parallel

functional programs [48] and a parallel garbage collector [6]. The idea is to coordinate memory allocation

and garbage collection with thread scheduling decisions so that each processor can allocate memory with-

out synchronization and independently collect a portion of memory by consulting a collection policy that

is fully distributed and does not require communicating with other processors. All of these designs focus

on a conventional object model for algebraic datatypes that, unlike LoCalpar, assume a uniform, boxed

representation. In the future, we plan to investigate how results in these parallel collectors relate to our

model, where objects may be laid out in a variety of ways.

100



Summary and Future Work

We presented two extensions to the Gibbon compiler and LoCal, concerning parallelism and memory

management. First, we have shown how a practical form of task parallelism can be reconciled with dense

data representations. We demonstrated this result inside a compiler designed to implicitly transform pro-

grams to operate on such dense representations. For a set of tree-manipulating programs we considered

in Section 3.4, this experimental system yielded better performance than existing best-in-class compilers.

To build on what we have presented in this paper, we plan to explore automatic granularity control [4, 3];

this would remove the last major source of manual tuning in Gibbon programs, which already automate

data layout optimizations. Parallel Gibbon with automatic granularity control would represent the dream

of implicitly parallel functional programming with good absolute wall-clock performance. While our cur-

rent approach supports limited examples of data parallelism–friendly data structures beyond trees, such

as dense arrays (Section 3.3.6), we plan to further generalize our system by adding additional data struc-

tures that capture mutable sparse and dense multi-dimensional data. We plan to support limited in-place

mutation of densely-encoded algebraic data, by adding primitives based on linear types, which we expect

to mesh well with the implicitly parallel functional paradigm. While Parallel Gibbon already out-performs

competing parallel, functional approaches, we expect these additional features will both improve pro-

grammability (by relieving the programmer of the burden of granularity control) and performance (by

supporting more efficient parallel structures and strategies).

Second, we presented a new approach to memory management for mostly-serialized heaps, as found

in the Gibbon compiler and runtime system. This hybrid collector is able to allocate objects and regions

quickly and coalesce objects, which were scattered at the points of their allocation, into efficient, serialized

representations. This work is a first step in a new direction that invites further study and refinement. It is

common in computer science to trade-off time and space using compression techniques, and these mostly-

serialized heaps point to opportunities to explore these tradeoffs more deeply in the context of language’s

in-memory representations. More prosaic, there are additional optimizations to develop and apply to our

system to further close the gap with traditional implementation techniques on their “home turf”, (i.e. the
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worst-case scenarios for Gibbon’s native representations). Finally, a major topic of future work is to scale

the approach to the parallel setting (both for the mutator and the collector).

7.1. Parallel Garbage Collection

Efficient automatic memory management is a longstanding challenge for parallel functional languages.

We have focused our attention, however, only on sequential programs so far. That is, because it would

be confounding, and also take a significant research and engineering effort, to address parallel garbage

collection simultaneously with developing a collector that operates on serialiazed data representations.

Extending GC-Gibbon to work efficiently in the parallel world is a promising area for future work. We

have a rough sketch on what first step towards this goal would look like, which we explain next.

7.1.1. Parallel mutators. To support parallel programs in a generational setting, we would need to

allow a mutator to allocate young-generation regions in parallel, using multiple threads. We could take

the standard approach of using thread-local young-generation heaps for this purpose. Concretely, we would

initialize an array of young-generations indexed by a thread id. Each mutator would use its host thread’s

id to access the corresponding young-generation and then allocate a region within that. Analogous to

the young-generation, we would also need to maintain thread-local shadow-stacks—we would similarly

initialize an array of shadow-stacks indexed by a thread id.

Since Parallel-Gibbon uses the Intel Cilk Plus language extension [14] to realize parallelism, we could

use the Cilk Plus API to implement the abstraction of a thread id. Fortunately, there is an already existing

mechanism in the API that is sufficient for our purposes. The function __cilkrts_get_nworkers() returns the

total number of Cilk Plus worker threads that can run a parallel task. We could use this function to compute

the size of the young-generation and shadow-stack arrays. Next, the function __cilkrts_get_worker_number()

returns an integer indicating the Cilk Plus worker id (a.k.a. the thread) on which the callee is executing.

We could use this as the thread id.

When a mutator running on a worker thread exhausts its local young-generation heap, it would per-

form three actions: (1) stop executing user code, (2) atomically bump a paused mutator count to indicate

that it has paused, and (3) signal its intention to trigger a minor collection by atomically setting a global

flag. But, we must wait until all the mutators have paused before starting the minor collection. To this end,

we would arrange each mutator to periodically check the global flag, before a function call or a letregion
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expression. If the flag is set, each mutator would pause itself. Eventually all mutators would come to a halt

using this mechanism and the last one to do so would trigger the minor collection1.

This simple design has some drawbacks. Checking the global flag would add overhead to function

calls and letregion expressions. Also, this mechanism isn’t a complete solution since a particular mutator

might run for a long time before reaching either of these expressions, in which case the other mutators

will pause indefinitely! In the future, when the collector is more mature, we intend to study and address

these sore spots.

7.1.2. Parallel collection, future directions. Thus far we have only worked out how to enable par-

allel mutators, but it’s equally important to parallelize the collector to scale the overall memory manage-

ment system. Parallelizing a copying collector might seem straightforward: run multiple collector threads

that evacuate different objects. But, it’s hard to get the details right such that the resulting system performs

well. We intend to tackle this problem in the future.

7.2. Layout Optimizations

Gibbon has many benefits: programmers no longer need to take control of low-level data representa-

tion and allocation to serialize linked structures; and rather than writing error-prone index math to access

data, the Gibbon compiler automatically translates idiomatic data structure accesses into operations on

the serialized representation. Gibbon also suffers from drawbacks complementary to the other approaches

mentioned above. It does not attempt to match data layout to the access patterns of a program. If the

particular serialization decisions for a data type chosen by Gibbon do not correspond to the behavior

of functions accessing that data, then pathological behavior can result. Consider a tree laid out in left-to-

right pre-order with a program that accesses that tree right-to-left. Rather than scanning straightforwardly

through the structure, the program would have to jump back and forth through the buffer to access the

necessary data. When encountering such cases, Gibbon does not break: instead, it inserts shortcut pointers

to allow more-random access to structures. But this defeats the purpose of a dense, packed representation:

not only are accesses no longer nicely strided through memory, but the pointers and pointer-chasing of

boxed data have returned. Indeed, when Gibbon is presented with a program whose access patterns do

not match the chosen data layout, the generated code can be significantly slower than plain, pointer-based
1The paused mutator count will be equal to the total number of worker threads when the last mutator pauses itself, which

is when collection would begin.
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representations. What we want is the best of both worlds: Gibbon’s dense, packed data layouts combined

with access pattern–aware decisions of how to lay out that data.

To that end, we have been working on an extension of the Gibbon compiler named Marmoset that

creates dense, packed data representations that match the way a program accesses that data. Marmoset’s

key insight is twofold. First, that a compile-time analysis can yield insights into how a program is likely

to access the fields of a data structure, including recursive traversal patterns. Second, that Gibbon’s dense,

serialized representation is ideal for taking advantage of this access information. Gibbon’s compilation

strategy makes explicit when field references will result in sub-optimal access patterns, making it possible

to statically estimate the costs of different layout choices. This cost model can be used to drive a search

process for a minimum-cost layout, subject to any additional constraints provided by the programmer.

Marmoset thus analyzes the behavior of a program, and synthesizes a data layout that corresponds to that

behavior. It then rewrites the data type and lowers the program to produce code that operates on a dense,

packed data representation in a way that matches access patterns and data layout, resulting in improved

locality.

We evaluated Marmoset using a realistic blog software application and observed a 2-4× speedup com-

pared to Gibbon. For a microbenchmark that computes the length of a linked list, the performance im-

provement is more pronounced—Marmoset produces code that is 43× faster compared to Gibbon! Consider

a linked list datatype with inlined variable-sized content:

data List = Nil | Cons Content List

If each element of the list is constructed using Cons, the traversal has to de-reference a pointer—to jump

over the content—each time to access the tail of the list. This is an expensive operation, especially if the

target memory addresses is not present in the cache. On the contrary, if the Content and List fields were

swapped, then to compute the length, the program only has to traverse 𝑛 bytes for a list of length 𝑛—one

byte per Cons tag—which is extremely efficient. Essentially, Marmoset transforms the program to use the

following datatype, while preserving its behavior:

data List ' = Nil | Cons List ' Content

The performance of the list constructed using the original Cons is ∼43× worse than the performance with

the Marmoset-optimized, flipped layout. Not only does the optimized layout have better data locality and

cache behavior, but it also has to execute fewer instructions since it does not de-reference the pointer.
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Sample Gibbon Programs

−− — Compute the nth fibonacci number, in parallel.

parfib :: Int → Int → Int

parfib cutoff n =

if n ≤ 1

then n

else if n ≤ cutoff

then seqfib n

else let (x,y) = (parfib cutoff (n-1)) ∥

(parfib cutoff (n-2))

in x + y

−− — Parallel ’buildTreeHvyLf’.

buildTreeHvyLf :: Int → Int → Tree

buildTreeHvyLf cutoff i =

if i ≤ 0

then Leaf (seqfib 20)

else if i ≤ cutoff

then buildTreeHvyLf_seq i

else let (x,y) = (buildTreeHvyLf cutoff (i-1)) ∥

(buildTreeHvyLf cutoff (i-1))

in Node i x y

Figure A.1. Programs for fib, buildtreeHvyLf.
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A. SAMPLE GIBBON PROGRAMS

type Point3d = (Float , Float , Float)

−− In Gibbon, the Kdtree type will be represented in a dense, mostly-serialized format:

data KdTree = KdLeaf { x :: Float , y :: Float , z :: Float }

| KdNode { x :: Float , y :: Float , z :: Float

, total_elems :: Int −− Number of elements in this node

, split_axis :: Int −− (0: x, 1: y, 2: z)

, split_value :: Float

, min :: Point3d , max :: Point3d

, left :: KdTree , right :: KdTree

}

| KdEmpty

−− — Maps an array of points to an array of their nearest neighbor.

allNearest :: KdTree → Array Point3d → Array Point3d

allNearest tr ls =

−− parallel map with a chunk-size of 1024.

par_map 1024 (\p → nearest tr p) ls

where

nearest :: KdTree → Point3d → Point3d

nearest = · · ·

Figure A.2. allNearest in Gibbon’s front-end language (Haskell).
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Type-Safety Proof for LoCalpar

This section contains typing rules for LoCalpar (Section B.1) and the complete proof of type-safety for

LoCalpar (Section B.2).

B.1. Typing Rules for LoCal

[T-Function-Definition]
Γ ; Σ; C; A; N ⊢ A; N ′; e : 𝜏@lr lr ∉ N ′

∀𝑖∈{ 1,...,𝑛 } .∃𝑗 .
Ð⇀
l𝑖 r𝑖 =

Ð⇀
l′𝑗

r′𝑗 ∃𝑗 .lr =
Ð⇀
l′𝑗

r′𝑗

⊢𝑓 𝑢𝑛 𝑓 : ∀Ð⇀
𝑙 ′𝑟
′ .
ÐÐ⇀
𝜏@lr → 𝜏@lr ; 𝑓Ð⇀𝑥 = e

where Γ = {Ð⇀𝑥1 ↦→
ÐÐÐÐ⇀
𝜏1@l1r1 , . . . ,Ð⇀𝑥𝑛 ↦→

ÐÐÐÐ⇀
𝜏𝑛@l𝑛r𝑛 }

Σ = {
Ð⇀
l1r1 ↦→ Ð⇀𝜏1 , . . . ,

Ð⇀
l𝑛r𝑛 ↦→ Ð⇀𝜏𝑛 }

C = ∅; A = { r ↦→ lr }; N = { lr };

𝑛 = |Ð⇀𝑥 | = |
ÐÐ⇀
𝜏@lr |

[T-Program]
⊢𝑓 𝑢𝑛

Ð⇀
fd Γ ; Σ; C; A; N ⊢ A′; N ′; e : 𝜏@lr

⊢𝑝𝑟𝑜𝑔 A′; N ′;
Ð⇀
dd ;
Ð⇀
fd ; e : 𝜏@lr

where Γ = ∅; Σ = ∅

C = { lr ↦→ start r }; A = { r ↦→ lr }; N = { lr }

Figure B.1. A copy of the typing rules for LoCal given in [65]. See also Figure B.3.
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B. TYPE-SAFETY PROOF FOR LoCalpar

[T-Var]
Γ (𝑥) = 𝜏@lr Σ(lr ) = 𝜏

Γ ; Σ; C; A; N ⊢ A; N ;𝑥 : 𝜏@lr

[T-Concrete-Loc]
Σ(lr ) = 𝜏

Γ ; Σ; C; A; N ⊢ A; N ; ⟨𝑟, 𝑖⟩𝑙 : 𝜏@lr

[T-Let]
Γ ; Σ; C; A; N ⊢ A′; N ′; e1 : 𝜏1@l1r1 l1r1 ∈ N l1r1 ∉ N ′

Γ ′; Σ′; C; A′; N ′ ⊢ A′′; N ′′; e2 : 𝜏2@l2r2 l2r2 ∈ N

Γ ; Σ; C; A; N ⊢ A′′; N ′′; let 𝑥 : 𝜏1@l1r1 = e1 in e2 : 𝜏2@l2r2

where Γ ′ = Γ ∪ { 𝑥 ↦→ 𝜏1@l1r1 }; Σ′ = Σ ∪ { l1r1 ↦→ 𝜏1 }

[T-LetRegion]
Γ ; Σ; C; A′; N ⊢ A′′; N ′; e : 𝜏@l′r

′
l′r
′
∈ N

Γ ; Σ; C; A; N ⊢ A′′; N ′; letregion r in e : 𝜏@l′r
′

where A′ = A ∪ { r ↦→ ∅ }

[T-LetLoc-Start]
A(r) = ∅ lr ∉ N ′′ l′r

′
≠ lr l′r

′
∈ N Γ ; Σ; C′; A′; N ′ ⊢ A′′; N ′′; e : 𝜏 ′@l′r

′

Γ ; Σ; C; A; N ⊢ A′′; N ′′; letloc lr = start r in e : 𝜏 ′@l′r
′

where C′ = C ∪ { lr ↦→ start 𝑟 }; A′ = A ∪ { r ↦→ lr }; N ′ = N ∪ { lr }

[T-LetLoc-Tag]
A(r) = l′r l′r , l′′r

′′
∈ N lr ∉ N ′′ lr ≠ l′′r

′′
Γ ; Σ; C′; A′; N ′ ⊢ A′′; N ′′; e : 𝜏 ′′@l′′r

′′

Γ ; Σ; C; A; N ⊢ A′′; N ′′; letloc lr = (l′𝑟 + 1) in e : 𝜏 ′′@l′′r
′′

where C′ = C ∪ { lr ↦→ (l′r + 1) }; A′ = A ∪ { r ↦→ lr }; N ′ = N ∪ { lr }

[T-LetLoc-After]
A(r) = l1r

Σ(l1r ) = 𝜏 ′ l1r ∉ N lr ∉ N ′′ lr ≠ l′r
′

Γ ; Σ; C′; A′; N ′ ⊢ A′′; N ′′; e : 𝜏 ′@l′r
′

l′r
′
∈ N

Γ ; Σ; C; A; N ⊢ A′′; N ′′; letloc lr = after 𝜏 ′@l1r in e : 𝜏 ′@l′r
′

where C′ = C ∪ { lr ↦→ after 𝜏 ′@l1r }; A′ = A ∪ { r ↦→ lr }; N ′ = N ∪ { lr }

Figure B.2. A copy of remaining typing rules for LoCal given in [65].
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[T-App]

|
Ð⇀
l′r
′
| = |
ÐÐ⇀
l′′r

′′
| |Ð⇀v | = |Ð⇀𝑥 |

Γ ; Σ; C; A; N ⊢ A; N ;Ð⇀v𝑖 :
ÐÐÐ⇀
𝜏𝑖@l𝑖 r𝑖 lr ∈ N A(r) = lr

∀𝑖 .∃𝑗 .
ÐÐÐ⇀
l′′′𝑖

r′′′𝑖 =
ÐÐ⇀
l′′𝑗

r′′𝑗 ∧
Ð⇀
l𝑖 r𝑖 =

Ð⇀
l′𝑗

r′𝑗 ∃𝑗 .l′′′r
′′′
=
ÐÐ⇀
l′′𝑗

r′′𝑗 ∧ lr =
Ð⇀
l′𝑗

r′𝑗

Γ ; Σ; C; A; N ⊢ A; N ′; 𝑓 [
Ð⇀
l′r
′
] Ð⇀v : 𝜏@lr

where 𝑓 : ∀ÐÐ⇀
l′′𝑟
′′ .
ÐÐÐÐÐ⇀
𝜏𝑖@l′′′𝑖

r′′′𝑖 → 𝜏@l′′′r
′′′

; (𝑓Ð⇀𝑥 = e) = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑓 )

N ′ = N − { lr }; 𝑛 = |Ð⇀v |; i ∈ { 1, . . . , 𝑛 }

[T-DataConstructor]
TypeOfCon(K) = 𝜏 TypeOfField (K, i) =

Ð⇀
𝜏 ′i

lr ∈ N A(r) =
Ð⇀
l𝑛r if 𝑛 ≠ 0 else lr

C (
Ð⇀
l1r ) = lr + 1 C (

ÐÐ⇀
lj+1r ) = after (

Ð⇀
𝜏 ′j @
Ð⇀
l′j

r )

Γ ; Σ; C; A; N ⊢ A; N ;Ð⇀vi :
ÐÐÐ⇀
𝜏 ′i @lir

Γ ; Σ; C; A; N ⊢ A′; N ′; K lr Ð⇀v : 𝜏@lr

where A′ = A ∪ { r ↦→ lr }; N ′ = N − { lr }

n = |Ð⇀v |; i ∈ I = { 1, . . . , n }; j ∈ I − { n }

[T-Case]
Γ ; Σ; C; A; N ⊢ A; N ; v : 𝜏 ′@l′r

′
lr ∈ N

𝜏 ′; Γ ; Σ; C; A; N ⊢pat A′; N ′;ÐÐ⇀𝑝𝑎𝑡i : 𝜏@lr

Γ ; Σ; C; A; N ⊢ A′; N ′; case v of
Ð⇀pat : 𝜏@lr

where n = |Ð⇀pat |; i ∈ { 1, . . . , n }

[T-Pattern]
TypeOfCon(K) = 𝜏 ′′ ArgTysOfConstructor (K) =

Ð⇀
𝜏 ′ Σ(lr ) = 𝜏

lr ≠
Ð⇀
l′𝑖

r′ Γ ′; Σ′; C; A; N ⊢ A′; N ′; e : 𝜏@lr

𝜏 ′′; Γ ; Σ; C; A; N ⊢𝑝𝑎𝑡 A′; N ′; K (
ÐÐÐÐÐÐ⇀
𝑥 : 𝜏 ′@l′r

′
) → e : 𝜏@lr

where Γ ′ = Γ ∪ {Ð⇀𝑥1 ↦→
Ð⇀
𝜏 ′1@
Ð⇀
l′1

r′
, . . . ,Ð⇀𝑥𝑛 ↦→

Ð⇀
𝜏 ′𝑛@
Ð⇀
l′𝑛

r′ }

Σ′ = Σ ∪ {
Ð⇀
l′1

r′ ↦→
Ð⇀
𝜏 ′1 , . . . ,

Ð⇀
l′𝑛

r′ ↦→
Ð⇀
𝜏 ′𝑛 }

i ∈ { 1, . . . , 𝑛 }; n = |
Ð⇀
𝜏 ′ | = |

ÐÐÐÐÐÐ⇀
𝑥 : 𝜏 ′@l′r |

Figure B.3. A copy of remaining typing rules for LoCal given in [65].
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B.2. Type-Safety

We state the type-safety theorem as follows:

Theorem B.2.1 (Type Safety).

If ∅; Σ;C;A;N ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A′;N′;T ∧ Σ;C;A;N ⊢𝑤𝑓𝑡𝑎𝑠𝑘𝑠 T

and T =⇒𝑛
𝑟𝑝 T

′

then, either ∀T ∈ T′. 𝑇𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (T )

or ∃ T′′. T′ =⇒𝑟𝑝 T
′′.

This theorem states that, if a given task set T is well typed and its overall store is well formed, and if

T makes a transition to some task set T′ in 𝑛 steps, then either all tasks in T′ are fully evaluated or T′ can

take a step to some task set T′′. As usual, we prove this theorem by showing progress and preservation.

Lemma B.2.2 (Top Level Progress).

If ∅; Σ;C;A;N ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A′;N′;T

and Σ;C;A;N ⊢𝑤𝑓𝑡𝑎𝑠𝑘𝑠 T

then ∀T ∈ T. 𝑇𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (T )

else T =⇒𝑟𝑝 T
′.

Proof: If every T ∈ T has evaluated to a value, we have no further proof obligations. Otherwise, the

obligation is to show that there is at least one task which can take a sequential or a parallel step. By

inversion on T-Taskset, and the typing rule given in the premise of this lemma, we know that all tasks in

the task set T are well-typed. Then, by inversion on T-Task, we know that the expression e it is evaluating

is also well-typed. We show that there is at least one T ∈ T which can take a sequential or a parallel step,

by performing induction on the typing derivation of the expression e that a task is evaluating.

Case: T-Let, e = let 𝑥 : 𝜏1 = e1 in e2

[T-Let]

Γ ; Σ; C; A; N ⊢ A′; N ′; e1 : 𝜏1@l1r1 l1r1 ∈ N l1r1 ∉ N ′

Γ ′; Σ′; C; A′; N ′ ⊢ A′′; N ′′; e2 : 𝜏2@l2r2 l2r2 ∈ N

Γ ; Σ; C; A; N ⊢ A′′; N ′′; let 𝑥 : 𝜏1@l1r1 = e1 in e2 : 𝜏2@l2r2

where Γ ′ = Γ ∪ { 𝑥 ↦→ 𝜏1@l1r1 }; Σ′ = Σ ∪ { l1r1 ↦→ 𝜏1 }
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Because e is not a value, the proof obligation is to show that there is at least one task which can

take a step. That is, there is a rule in the dynamic semantics whose left-hand side matches the machine

configuration T. There are two rules that can match.

(1)
[D-Par-Let-Fork]

T1, ... , (𝜏, cl, S; M; e), ... T𝑛 =⇒𝑟𝑝 T1, ... , (𝜏1, cl′1, S; M; e1), ... T𝑛, (𝜏, cl, S; M2; e′2)
where e = (let 𝑥 : 𝜏1 = e1 in e2); 𝜏1 = 𝜏1@l1r1

𝑥1 fresh; cl′1 = ⟨r1, ivar 𝑥1⟩ ; e′2 = e2 [cl′1/𝑥]
M = { l1r1 ↦→ cl1 } ∪M′; M2 = { l1r1 ↦→ cl′1 } ∪M′

By inversion on D-Par-Let-Fork, the only obligation is to estalish that cl1 = M̂ (l1r1). By

applying the rule WF 3.2.5.1;2 for the well-formedness of the task set given in the premise of this

lemma, we can obtain a well-formedness result for the store and location map used by this task:

Σ; C; A; N ;T ⊢𝑤𝑓 M; S. We can then perform inversion on the well-formedness of the store, and

apply the rule WF 3.2.5.2;3 to obtain A; N ⊢𝑤𝑓𝑐𝑎 M; S. Finally, we apply WF 3.2.5.4;3 to obtain

⟨r, i⟩ = M̂ (l1r1). Thus we have discharged the proof obligation, and this task can take a parallel

step using D-Par-Let-Fork.

(2)
[D-Par-Step]

S; M; e⇒ S′; M′; e′

T1, ... , (𝜏, cl, S; M; e), ... T𝑛 =⇒𝑟𝑝 T1, ... , (𝜏, cl, S′; M′; e′), ... T𝑛

To obtain this result, we use Lemma B.2.3 for single thread progress. There are two precon-

ditions in order to use this lemma: ∅; Σ; C; A; N ⊢ A′; N ′; e : 𝜏 , and Σ; C; A; N ; M ⊢𝑤𝑓 S;. The first

precondition is already established at the start of the proof, by performing inversion on T-Taskset,

and then on T-Task. The second precondition can be discharged by performing inversion on the

on the well-formedness of the task set given in the premise of this lemma, and then applying the

rule WF 3.2.5.1;2.
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Case: T-DataConstructor-Ivars, e = K lr Ð⇀v

[T-DataConstructor-Ivars]

TypeOfCon(K) = 𝜏 TypeOfField (K, i) =
Ð⇀
𝜏 ′i

lr ∈ N A(r) =
Ð⇀
l𝑛r if 𝑛 ≠ 0 else lr

C (
Ð⇀
l1r) = lr + 1 C (

ÐÐ⇀
lj+1r) = after (

Ð⇀
𝜏 ′j @
Ð⇀
l′j

r)

∃k∈I .⟨r, ivar 𝑥𝑘⟩ = Ð⇀v𝑘 Γ ; Σ; C; A; N ⊢ A; N ;Ð⇀vi :
ÐÐÐ⇀
𝜏 ′i @lir

Γ ; Σ; C; A; N ⊢ A′; N ′; K lr Ð⇀v : 𝜏@lr

where n = |Ð⇀v |; i ∈ I = { 1, . . . , n }; j ∈ I − { n }

Because e is not a value, the proof obligation is to show that there is a task which can take a step. That

is, there is a rule in the dynamic semantics whose left-hand side matches the machine configuration T.

There is a single rule that can match.

[D-Par-DataConstructor-Join]

T1, ... , (𝜏, cl, S; M; e), ... , T𝑛 =⇒𝑟𝑝 T1, ... , T ′, ... , T𝑛
where e = K lr Ð⇀v ; ⟨r, ivar 𝑥j⟩ = Ð⇀vj ; T𝑐 ∈ { T1, ... , T𝑛 }

T𝑐 = (𝜏𝑐@l𝑐 r , ⟨r, ivar 𝑥 𝑗 ⟩, S𝑐 ; M𝑐 ; ⟨r, i𝑐⟩l𝑐 )
M′ = MergeM (M𝑐 ,M); S′ = MergeS(S𝑐 , S)
n = |Ð⇀v |;

Ð⇀
v′ = [Ð⇀v1, ... ,

ÐÐ⇀vj−1, ⟨r, i𝑐⟩l𝑐 ,Ð⇀vj+1, ... ,
Ð⇀v𝑛]

𝜏j = TypeOfField (K, j);
S′′ = LinkFields(S′,M, 𝜏j, ⟨r, i𝑐⟩l𝑐 ) if 𝑗 ≠ 𝑛 else S′

e′ = K lr Ð⇀v′ ; T ′ = (𝜏, cl, S′′; M′; e′)

If any of the fields of the data constructor have evaluated to an ivar, the only rule that can match

is D-Par-DataConstructor-Join. By inversion on D-Par-DataConstructor-Join, the only obligation then is

to find a task T𝑐 which supplies a value of that ivar. To obtain this result we perform inversion on the

well-formedness of the task set given in the premise of this lemma, and apply the rule WF 3.2.5.1;1. Thus,

we know that exactly one such task T𝑐 exists. There are two possible states in which the task T𝑐 may be

in — it may have evaluated its expression to a value, or not. If the former is true, then the rule D-Par-

DataConstructor-Join matches, and this task can take a step. Otherwise, the T𝑐 , or one of its child tasks

can take a step, and thus this case.
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Case: T-Case, e = case v of
Ð⇀pat : 𝜏@lr

Because e is not a value, the proof obligation is to show that there is a task which can take a step. That

is, there is a rule in the dynamic semantics whose left-hand side matches the machine configuration T.

There are two rules that can match: D-Par-Case-Join, or D-Par-Step. With respect to D-Par-Case-Join, it

can be discharged by using similar reasoning as the T-DataConstructor-Ivars case. As for D-Par-Step, we

use Lemma B.2.3 for single thread progress like earlier.

Case:

The cases for T-DataConstructor, T-LetRegion, T-LetLoc-Tag, T-LetLoc-Start, T-LetLoc-After, T-Var, and

T-Concrete-Loc use the Lemma B.2.3 for single thread progress, and can be discharged by using similar

reasoning to the previous cases.

■

Lemma B.2.3 (Single Thread Progress).

If ∅; Σ; C; A; N ⊢ A′; N ′; e : 𝜏

and Σ; C; A; N ; M ⊢𝑤𝑓 S;

then e value

else S; M; e⇒ S′; M′; e′.

Proof: The proof is by induction on the typing derivation of e.

Case: T-LetLoc-After, e = letloc lr = after 𝜏 ′@l1r in e′

[T-LetLoc-After]

A(r) = l1r

Σ(l1r) = 𝜏 ′ l1r ∉ N lr ∉ N ′′ lr ≠ l′r
′

Γ ; Σ; C′; A′; N ′ ⊢ A′′; N ′′; e : 𝜏 ′@l′r
′

l′r
′
∈ N

Γ ; Σ; C; A; N ⊢ A′′; N ′′; letloc lr = after 𝜏 ′@l1r in e : 𝜏 ′@l′r
′

where C′ = C ∪ { lr ↦→ after 𝜏 ′@l1r }; A′ = A ∪ { r ↦→ lr }; N ′ = N ∪ { lr }

Because e is not a value, the proof obligation is to show that there is a task which can take a step. That

is, there is a rule in the dynamic semantics whose left-hand side matches the machine configuration S; M; e.

There are two rules that can match: D-LetLoc-After, or D-LetLoc-After-NewReg. They both have a similar

precondition: cl = M̂ (l1r). To obtain this result, we need to use rule WF 3.2.5.2;1 of the well-formedness of

the store given in the premise of this lemma. This rule requires that Σ(l1r) = 𝜏 ′, which can be obtained by
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inversion on T-LetLoc-After. By inversion on WF 3.2.5.2;1, we can establish that either ⟨r, i⟩ = M̂ (l1r), or

⟨r, ivar 𝑥⟩ = M̂ (l1r) holds. The individual requirements for each case are handled by the following case

analysis.

(1) ⟨r, i⟩ = M̂ (l1r)
[D-LetLoc-After]

S; M; letloc lr = after 𝜏@l0r in e⇒ S; M′; e

where ⟨r, i⟩ = M̂ (l0r); 𝜏 ; ⟨r, i⟩ ; S ⊢ew ⟨r, j⟩
M′ = M ∪ { lr ↦→ ⟨r, j⟩ }

If ⟨r, i⟩ = M̂ (l1r), the only rule that can match is D-LetLoc-After. The only remaining obliga-

tion is to show that an end-witness j for the value allocated at the address ⟨r, i⟩ exists:

𝜏 ′; ⟨r, i⟩ ; S ⊢ew ⟨r, j⟩ . This can be discharged by applying the rule WF 3.2.5.2;1. If ⟨r, i⟩ = M̂ (l1r),

the first disjunct of WF 3.2.5.2;1 holds, and thus discharges our required obligation.

(2) ⟨r, ivar 𝑥⟩ = M̂ (l1r)
[D-LetLoc-After-NewReg]

S; M; letloc lr = after 𝜏@l0r in e⇒ S′; M′; e

where ⟨r, ivar 𝑥⟩l0 = M̂ (l0r); r′ fresh
S′ = S ∪ { r′ ↦→ ∅ }; M′ = M ∪ { lr ↦→ ⟨r,&(r′, 0)⟩ }

This rule has no remaining obligations, and matches directly, and thus this case.

Case:

The cases for T-DataConstructor, T-Let, T-LetRegion, T-LetLoc-Tag, T-LetLoc-Start, T-Var, T-Concrete-Loc,

T-Appare similar to the proof of progress for sequential LoCal given in [65].

■

Lemma B.2.4 (Top Level Preservation).

If ∅; Σ;C;A;N ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A′;N′;T

and Σ;C;A;N ⊢𝑤𝑓𝑡𝑎𝑠𝑘𝑠 T

and T =⇒𝑟𝑝 T
′

then for some deepSuperSetEqS(Σ′,Σ), deepSuperSetEqC(C′,C), A′′ ⊇ A′, N′′ ⊇ N′.

∅; Σ′;C′;A′′;N′′ ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A′′′;N′′′;T′

and Σ′;C′;A′′;N′′ ⊢𝑤𝑓𝑡𝑎𝑠𝑘𝑠 T
′.
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Proof: The proof is by induction on the given derivation of the dynamic semantics.

Case: D-Par-Let-Fork

[D-Par-Let-Fork]

T1, ... , (𝜏, cl, S; M; e), ... T𝑛 =⇒𝑟𝑝 T1, ... , (𝜏1, cl′1, S; M; e1), ... T𝑛, (𝜏, cl, S; M2; e′2)
where e = (let 𝑥 : 𝜏1 = e1 in e2); 𝜏1 = 𝜏1@l1r1

𝑥1 fresh; cl′1 = ⟨r1, ivar 𝑥1⟩ ; e′2 = e2 [cl′1/𝑥]
M = { l1r1 ↦→ cl1 } ∪M′; M2 = { l1r1 ↦→ cl′1 } ∪M′

Let Σ = Σ(cl), C = C(cl), A = A(cl), and N = A(cl) be the environments corresponding to the task

(𝜏, cl, S; M; e). We instantiate the new environment maps as:

Σ′ = Σ ∪ { l1r1 ↦→ 𝜏1 }

Σ′ = Σ ∪ { cl′1 ↦→ Σ, cl ↦→ Σ′ }

C′ = C ∪ { cl′1 ↦→ C }

A′′ = A′ ∪ { cl′1 ↦→ A }

N′′ = N′ ∪ { cl′1 ↦→ N }
The task executing the body of the let expression has the target location cl. In Σ′, we include an updated

entry, (cl ↦→ Σ′), to establish the allocation of the bound expression. And we extend the environments

Σ′, C′, A′, and N′ to contain an entry for cl′1, which is the target location of the task executing the bound

expression, as the incoming environments won’t contain an entry for cl′1, which is a fresh concrete location

generated by D-Par-Let-Fork.

(1) The first obligation is to show that the result T′ of the evaluation step is well-typed with respect to

the environments Σ′, C′, A′′, and N′′. By inversion on T-Taskset, the obligation then is to show

that all tasks in T′ are well-typed. By the typing rule given in the premise of this lemma and

by inversion on T-Taskset, we can directly establish the well-typedness of the tasks in T. Thus

there are only two remaining obligations, namely to show that the two new tasks spawned by

D-Par-Let-Fork are well-typed.

(a) Let Σ = Σ(cl′1), C = C(cl′1), A = A(cl′1), N = A(cl′1) .

Obl: ∅; Σ; C; A; N ⊢𝑡𝑎𝑠𝑘 A′; N ′; (𝜏1, cl′1, S; M; e1)

By inversion on T-Task, we see that in order to prove that this task is well-typed, we must

show that the expression e1 is well-typed with respect to the environments Σ, C, A, and

N . Concretely, the obligation is to show that ∅; Σ; C; A; N ⊢ A′; N ′; e1 : 𝜏1 holds. We can
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discharge this obligation as follows. By the typing rule given in the premise of this lemma,

and by inversion on T-Taskset, we can establish that the task (𝜏, cl, S; M; e) is well-typed. By

inversion on T-Task, we establish that the expression e is well-typed: Γ ; Σ; C; A; N ⊢ A′; N ′; e :

𝜏 . Then by inversion on T-Let, we can obtain the desired result.

(b) Let Σ′ = Σ(cl), C = C(cl), A = A(cl), N = A(cl) .

Obl: ∅; Σ′; C; A; N ⊢𝑡𝑎𝑠𝑘 A′; N ′; (𝜏, cl, S; M2; e′2)

This obligation can be discharged by using similar reasoning as above. The only difference is

that in order for the expression e′2 to typecheck, T-Let requires the location of bound expres-

sion, l1r1 , to be in the store typing environment. The environment Σ′ that is instantiated for

this task fulfils this requirement, and thus this obligation is discharged.

(2) The second obligation is to show that the result of the evaluation step is well-formed. The individ-

ual requirements, labeled WF 3.2.5.1;1 - WF 3.2.5.1;2, are handled by the following case analysis.

• Case (WF 3.2.5.1;1): for each ivar ⟨r, ivar 𝑥⟩ in the result T′, there exists exactly one task in

T′ which supplies a well-typed value for it.

By the well-formedness of the task set given in the premise of this lemma, this already holds

for all ivars in the task set T. The only remaining obligation then is to show that a cor-

responding unique task exists for the only new ivar introduced by D-Par-Let-Fork, namely

⟨r1, ivar 𝑥1⟩ . This obligation discharges straightforwardly by inversion on D-Par-Let-Fork,

and the typing rule given in the premise of this lemma.

• Case(WF 3.2.5.1;2): the stores of all tasks in the result T′ are well-formed.

By the well-formedness of the task set given in the premise of this lemma, we can directly

establish the well formedness of stores of all tasks in the task set T. Thus there are only two

remaining obligations, to show that the stores of the two new tasks spawned by D-Par-Let-

Fork are well-formed.

(a) Case (𝜏1, cl′1, S; M; e1); Σ; C; A′; N ′;T′ ⊢𝑤𝑓 S; M:

Since all of the environments remain unchanged in this task, this case follows imme-

diately by inversion on the well-formedness of the task set given in the premise of this

lemma.

(b) Case (𝜏, cl, S; M2; e′2); and Σ′; C; A′; N ′;T′ ⊢𝑤𝑓 S; M2:
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This task uses the updated environment Σ′ = Σ ∪ { l1r1 ↦→ 𝜏1 }, so we must show the

store S, and location map M2 are well-formed. The individual requirements, labeled

WF 3.2.5.2;1 - WF 3.2.5.2;4, are handled by the following case analysis.

– Case (WF 3.2.5.2;1):

(lr ↦→ 𝜏) ∈ Σ ⇒

(⟨r, i1⟩ = M̂ (lr) ∧ 𝜏 ; ⟨r, i1⟩ ; S ⊢ew ⟨r, i2⟩) ⊕

(⟨r, ivar 𝑥⟩ = M̂ (lr) ∧

∃S′,M′,e′ .(𝜏, ⟨r, ivar 𝑥⟩, S′; M′; e′) = 𝐺𝑒𝑡𝑆𝑖𝑛𝑔𝑙𝑒𝑊𝑟𝑖𝑡𝑒𝑟 (T, 𝜏, ivar 𝑥) ∧

⟨r, i1⟩ = M̂′(lr) ∧

(𝐼𝑠𝑉𝑎𝑙 (e′) ⇒ 𝜏 ; ⟨r, i1⟩ ; S′ ⊢ew ⟨r, i2⟩))

By the well formedness of the task set given in the premise of this lemma, we

establish the well formedness of stores of all tasks in the task set T, and we obtain

the result Σ; C; A; N ;T ⊢𝑤𝑓 S; M . Thus, for all locations in Σ, the above already

holds. Then the only obligation is to show that it holds for the new location added

to Σ′, l1r1 . For l1r1 , the second disjunct follows straightforwardly by inversion on

D-Par-Let-Fork.

– Cases (WF 3.2.5.2;2), (WF 3.2.5.2;3), and (WF 3.2.5.2;4):

The remaining three cases also discharge straightforwardly by inversion on D-Par-

Let-Fork, and on the well-formedness of the task set given in the premise of this

lemma.

Case: D-Par-DataConstructor-Join

[D-Par-DataConstructor-Join]

T1, ... , (𝜏, cl, S; M; e), ... , T𝑛 =⇒𝑟𝑝 T1, ... , T ′, ... , T𝑛
where e = K lr Ð⇀v ; ⟨r, ivar 𝑥j⟩ = Ð⇀vj ; T𝑐 ∈ { T1, ... , T𝑛 }

T𝑐 = (𝜏𝑐@l𝑐 r , ⟨r, ivar 𝑥 𝑗 ⟩, S𝑐 ; M𝑐 ; ⟨r, i𝑐⟩l𝑐 )
M′ = MergeM (M𝑐 ,M); S′ = MergeS(S𝑐 , S)
n = |Ð⇀v |;

Ð⇀
v′ = [Ð⇀v1, ... ,

ÐÐ⇀vj−1, ⟨r, i𝑐⟩l𝑐 ,Ð⇀vj+1, ... ,
Ð⇀v𝑛]

𝜏j = TypeOfField (K, j);
S′′ = LinkFields(S′,M, 𝜏j, ⟨r, i𝑐⟩l𝑐 ) if 𝑗 ≠ 𝑛 else S′

e′ = K lr Ð⇀v′ ; T ′ = (𝜏, cl, S′′; M′; e′)
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Let Σ = Σ(cl), C = C(cl), A = A(cl), and N = A(cl) be the environments corresponding to the

task (𝜏, cl, S; M; e), and let Σ𝑐 = Σ(⟨r, ivar 𝑥⟩), C𝑐 = C(⟨r, ivar 𝑥⟩), A𝑐 = A(⟨r, ivar 𝑥⟩), and N𝑐 =

A(⟨r, ivar 𝑥⟩) be the environments corresponding to the task (𝜏𝑐@l𝑐 r𝑐 , cl, S; M; e).

We instantiate the new environment maps as:

Σ′ = Σ ∪ { cl ↦→ (Σ ∪ Σ𝑐) }

C′ = C ∪ { cl ↦→ (C ∪ C𝑐) }
(1) The first obligation is to show that the result T′ of the evaluation step is well-typed with respect

to the environments Σ′, C′, A′, and N′. By inversion on T-Taskset, the obligation then is to

show that all tasks in T′ are well-typed. By the typing rule given in the premise of this lemma

and by inversion on T-Taskset, we can directly establish the well-typedness of the tasks in T.

Thus the only remaining obligation, is to show that the task that is updated by the rule D-Par-

DataConstructor-Join is well-typed. By inversion on T-Task, we need to show that the expression

it is evaluating is well-typed. Concretely, the proof obligation is:

∅; Σ′; C′; A′; N ′ ⊢ A′′; N ′′; K lr Ð⇀v′ : 𝜏

where
Ð⇀
v′ = [Ð⇀v1, . . . ,

ÐÐ⇀vj−1, ⟨r, i𝑐⟩,Ð⇀vj+1, . . . ,
Ð⇀v𝑛]. We discharge this case by showing that

Ð⇀
v′ and Ð⇀v

have the same type. In order to establish this result, we first perform inversion on the typing

judgement given in the premise of this lemma, and then on T-Taskset and T-Task, to obtain a

result that K lr Ð⇀v is well-typed. Since
Ð⇀
v′ is obtained by replacing the 𝑗 th value in Ð⇀v , namely

⟨r, ivar 𝑥 𝑗 ⟩ , with the value ⟨r, i𝑐⟩ , if the values ⟨r, ivar 𝑥 𝑗 ⟩ and ⟨r, i𝑐⟩ , are of the same type, then
Ð⇀
v′ andÐ⇀v should also have the same type. By performing inversion on the well-formedness of the

task set given in the premise of this lemma, and then applying the rule WF 3.2.5.1;1, we establish

that there is exactly one task in the task set which supplies a well-typed value for ivar 𝑥 𝑗 . Thus,

⟨r, i𝑐⟩ must have the same type as ⟨r, ivar 𝑥 𝑗 ⟩ , and thus this case.

(2) The second obligation is to show that the result of the evaluation step is well-formed. The individ-

ual requirements, labeled WF 3.2.5.1;1 - WF 3.2.5.1;2, are handled by the following case analysis.

• Case (WF 3.2.5.1;1): for each ivar ⟨r, ivar 𝑥⟩ in the result T′, there exists exactly one task in

T′ which supplies a well-typed value for it

By inversion on the well-formedness of the task set given in the premise of this lemma, this

already holds for all ivar in T. Since D-LetLoc-After-NewReg doesn’t introduce any new

ivars, this case discharges straightforwardly.
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• Case (WF 3.2.5.1;2): Σ; C; A′; N ′;T′ ⊢𝑤𝑓 S′′; M′

By inversion on the well-formedness of the task set given in the premise of this lemma, we

establish that all tasks in the task set T are well formed. By applying WF 3.2.5.1;2, we obtain

the following:

Σ; C; A; N ;T ⊢𝑤𝑓 M; S(1)

Σ𝑐 ; C𝑐 ; A𝑐 ; N𝑐 ;T ⊢𝑤𝑓 M𝑐 ; S𝑐(2)

The proof obligation is to show that the store S′′ is well-formed with respect to the location

map M′, and the environments Σ′, C′, A′, and N ′, where M′ = MergeM (M,M𝑐). To discharge

this case, we perform a case analysis on the definition of MergeM .

– Case 1:

{ lr ↦→ ⟨r, i1⟩ | (lr ↦→ ⟨r, i1⟩) ∈ M, (lr ↦→ ⟨r, i2⟩) ∈ M𝑐 , i1 = i2 }

Identitical entries in M and M𝑐 remain unchanged in the merged location map M′. For

such entries, this case holds straightforwardly by using Results (1) and (2).

– Case 2:

{ lr ↦→ cl | (lr ↦→ cl) ∈ M, lr ∉ M𝑐 } and { lr ↦→ cl | lr ∉ M, (lr ↦→ cl) ∈ M𝑐 }

Entries that are not shared in common by M and M𝑐 remain unchanged in the merged

location map M′. For such entries, this case holds straightforwardly by using Results (1)

and (2).

– Case 3: { lr ↦→ ⟨r, j⟩ | (lr ↦→ ⟨r, ivar 𝑥⟩) ∈ M, (lr ↦→ ⟨r, j⟩) ∈ M𝑐 }

When a location maps to an ivar in M , and to a concrete index in M𝑐 , the merged

location map M′ keeps the concrete index and discards the ivar. To discharge this case,

we must show that even when the location map is thus updated, the store S′′ is well-

formed. The individual requirements, labeled WF 3.2.5.2;1 - WF 3.2.5.2;4, are handled

by the following case analysis.

∗ Case (WF 3.2.5.2;1):

(lr ↦→ 𝜏) ∈ Σ ⇒

(⟨r, i1⟩ = M̂ (lr) ∧ 𝜏 ; ⟨r, i1⟩ ; S ⊢ew ⟨r, i2⟩) ⊕

(⟨r, ivar 𝑥⟩ = M̂ (lr) ∧

∃S2,M2,e2 .(𝜏, ⟨r, ivar 𝑥⟩, S2; M2; e2) =

𝐺𝑒𝑡𝑆𝑖𝑛𝑔𝑙𝑒𝑊𝑟𝑖𝑡𝑒𝑟 (T, 𝜏, ivar 𝑥) ∧
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⟨r, i1⟩ = M̂2(lr) ∧

(𝐼𝑠𝑉𝑎𝑙 (e2) ⇒ 𝜏 ; ⟨r, i1⟩ ; S2 ⊢ew ⟨r, i2⟩))

By inversion on Result (1), we know that WF 3.2.5.2;1 holds for S. And since (lr ↦→

⟨r, ivar 𝑥⟩) ∈ M , the second disjunct of WF 3.2.5.2;1 must hold. Since this lr

is being updated to map to a concrete index, in order to discharge this case we

must show that the first disjunct of WF 3.2.5.2;1 now holds for it. There are two

obligations: ⟨r, j⟩ = M̂′(lr), and 𝜏 ; ⟨r, j⟩ ; S′′ ⊢ew ⟨r, j2⟩ . Since the second disjunct of

WF 3.2.5.2;1 holds for the store S and location map M , we obtain the following:

(i) ⟨r, ivar 𝑥⟩ = M̂ (lr)

(ii) ∃S2,M2,e2 .(𝜏, ⟨r, ivar 𝑥⟩, S2; M2; e2) =

𝐺𝑒𝑡𝑆𝑖𝑛𝑔𝑙𝑒𝑊𝑟𝑖𝑡𝑒𝑟 (T, 𝜏, ivar 𝑥)

(iii) ⟨r, i1⟩ = M̂2(lr)

(iv) 𝐼𝑠𝑉𝑎𝑙 (e2) ⇒ 𝜏 ; ⟨r, i1⟩ ; S2 ⊢ew ⟨r, i2⟩

By applying WF 3.2.5.1;1, we can establish that there is exactly one task in T that

can provide a well-typed value for an ivar. Thus, the task being merged by D-Par-

DataConstructor-Join must be this unique task. As a result, the location map M2,

store S2, and expression e2, must be the same as M𝑐 , S𝑐 , and ⟨r, i𝑐⟩ . Thus, we obtain:

(v) ⟨r, j⟩ = M̂𝑐 (lr)

(vi) 𝐼𝑠𝑉𝑎𝑙 (⟨r, i𝑐⟩) ⇒ 𝜏 ; ⟨r, j⟩ ; S𝑐 ⊢ew ⟨r, j2⟩

The first obligation, ⟨r, j⟩ = M̂′(lr), discharges by inspection on MergeM , which

inserts the mapping (lr ↦→ ⟨r, j⟩) in M′. The second obligation, 𝜏 ; ⟨r, j⟩ ; S′′ ⊢ew

⟨r, j2⟩ , discharges since

𝐼𝑠𝑉𝑎𝑙 (⟨r, i𝑐⟩) is true, and the store S′′ contains all the allocations performed in S𝑐 .

Thus, this case.

∗ WF 3.2.5.2;2 C ⊢𝑤𝑓𝑐𝑓 𝑐 ; S′′

◦ Case (WF 3.2.5.3;1):

(lr ↦→ start r) ∈ C ⇒ (lr ↦→ ⟨r, 0⟩) ∈ M

Since the address of a location at the start of a region cannot be an ivar, this case

discharges trivially.

◦ Case (WF 3.2.5.3;2):

(lr ↦→ start r) ∈ C ⇒ (lr ↦→ ⟨r, 0⟩) ∈ M
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Since the address of a location one past the start of a region cannot be an ivar,

this case discharges trivially.

◦ Case (WF 3.2.5.3;3):

(lr ↦→ after 𝜏@l′r) ∈ C ⇒

(⟨r, i1⟩ = M̂ (l′r) ∧ 𝜏 ; ⟨r, i1⟩ ; S ⊢ew ⟨r, i2⟩ ∧ ⟨r, i2⟩ = M̂ (lr)) ⊕

(⟨r, ivar 𝑥1⟩ = M̂ (l′r) ∧ (lr ↦→ ⟨r,&(r2, 0)⟩) ∈ M ∧ { r2 ↦→ h } ∈ S) ⊕

(⟨r, i1⟩ = M̂ (l′r) ∧ 𝜏 ; ⟨r, i1⟩ ; S ⊢ew ⟨r, i2⟩ ∧ (lr ↦→ ⟨r,&(r2, 0)⟩) ∈ M ∧ S(r) (i2) =

&(r2, 0))

By inversion on Result (1), we know that WF 3.2.5.3;3 holds for S. And since

(lr ↦→ ⟨r, ivar 𝑥⟩) ∈ M , the second disjunct of WF 3.2.5.3;3 must hold. But if

lr is being updated to map to a concrete index instead of an ivar by the merge,

and since this case looks at state of the machine after a merge, we must show

that the third disjunct of WF 3.2.5.3;3 now holds in order to discharge this case.

There are three obligations:

• ⟨r, j⟩ = M̂′(lr)

This obligation discharges straightforwardly by the premise of this case, and by

inspection of MergeM , which updates lr to map to a concrete index instead of an

ivar.

• 𝜏 ; ⟨r, j⟩ ; S′′ ⊢ew ⟨r, j2⟩

By Result 2, we get Σ; C; A; N ;T ⊢𝑤𝑓 M𝑐 ; S𝑐 . And since (lr ↦→ ⟨r, j⟩), the first

disjunct of WF 3.2.5.2;1 must hold. The only precondition of WF 3.2.5.2;1, (lr ↦→

𝜏) ∈ Σ, discharges straightforwardly by inversion on T-LetLoc-After, which is

the only rule that adds a constraint (l1r ↦→ after 𝜏@lr) to C. Thus, we get

𝜏 ; ⟨r, j⟩ ; S𝑐 ⊢ew ⟨r, j2⟩ . Since the S′′ contains all the allocations performed in S𝑐 ,

𝜏 ; ⟨r, j⟩ ; S′′ ⊢ew ⟨r, j2⟩ must hold as well.

• (l1r ↦→ ⟨r, j2⟩) ∈ M′ ∨

(S′′(r) (j2) = &(r2, j3) ∧ (l1r ↦→ ⟨r,&(r2, j3)⟩) ∈ M′)

We can discharge this case by showing that the second disjunct holds. There are

two obligations: S′′(r) (j2) = &(r2, j3), and (l1r ↦→ ⟨r,&(r2, j3)⟩) ∈ M′. The first

obligation discharges by inspecting the definition of LinkFields, which writes

the appropriate indirection to the store. To discharge the second obligation,
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we perform inversion on Result 1. By inversion, we know that WF 3.2.5.3;3

must hold for M . And since (lr ↦→ ⟨r, ivar 𝑥⟩) ∈ M , the second disjunct of

WF 3.2.5.3;3 must hold for M . Thus, we get (l1r ↦→ ⟨r,&(r2, j3)⟩) ∈ M . Since M′

contains this mapping from M , (l1r ↦→ ⟨r,&(r2, j3)⟩) ∈ M′ holds as well.

◦ Case Σ′; C′; A′; N ′;T′ ⊢𝑤𝑓 { lr ↦→ ⟨r, j⟩ | (lr ↦→ ⟨r, j⟩) ∈ M, (lr ↦→ ⟨r, ivar 𝑥⟩) ∈

M𝑐 }; S′′

This case is identical to the previous one.

∗ Case WF 3.2.5.2;3

The individual requirements, labeled WF 3.2.5.4;1 - WF 3.2.5.4;4, are handled by

the following case analysis.

◦ Case (WF 3.2.5.4;1):

((r ↦→ lr) ∈ A′ ∧ lr ∈ N ′) ⇒

((lr ↦→ ⟨r, i⟩) ∈ M′ ∧ i > MaxIdx (r, S)) ⊕ (lr ↦→ &(r2, i2)) ∈ M′

By the well-formedness of the store given in the premise of this lemma, the above

already holds for locations in the environments A and N . This case discharges

straightforwardly by using Results (1) and (2) since D-Par-DataConstructor-Join

doesn’t introduce any new locations in A and N .

◦ Case (WF 3.2.5.4;2)

((r ↦→ lr) ∈ A ∧ ⟨r, i𝑠⟩ = M̂ (lr) ∧ lr ∉ N ′ ∧ 𝜏 ; ⟨r, i𝑠⟩ ; S ⊢ew ⟨r, i𝑒⟩) ⇒ i𝑒 >

MaxIdx (r, S)

By inversion on T-DataConstructor-Ivars, lr ∈ N ′, and thus this case discharges

immediately.

◦ Case (WF 3.2.5.4;3):

lr ∈ N ′ ⇒ ⟨r, i⟩ = M̂′(lr) ∧ (r ↦→ (i ↦→ K)) ∉ S′

By the well-formedness of the store given in the premise of this lemma, the above

already holds for all locations in N . This case discharges straightforwardly by

using Results (1) and (2) since D-Par-DataConstructor-Join doesn’t introduce

any new locations in N .

◦ WF 3.2.5.4;4:

(r ↦→ ∅) ∈ A⇒ (r ↦→ ∅) ∈ S
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This case discharges because, from the premise of the lemma, this property holds

for the original environment A and store S, and, by inversion on

T-DataConstructor-Ivars, continues to hold for A′ and S′.

∗ Case (WF 3.2.5.2;4): 𝑑𝑜𝑚(Σ) ∩ N = ∅

This case discharges because, from the premise of the lemma, this property holds

for the original environments N and Σ, and, by inversion on T-DataConstructor,

continues to hold for N and Σ.

Case: D-Par-Case-Join

[D-Par-Case-Join]

T1, ... , T𝑐 , ... , T𝑛 =⇒𝑟𝑝 T1, ... , T ′𝑐 , ... T𝑛,

where
T𝑐 = (𝜏𝑐 , cl𝑐 , S𝑐 ; M𝑐 ; e𝑐); e𝑐 = case ⟨r, ivar 𝑥𝑐⟩l𝑐 of

Ð⇀pat

T𝑝 ∈ { T1, ... , T𝑛 } = (𝜏𝑝@l𝑝 r , ⟨r, ivar 𝑥𝑐⟩, S𝑝 ; M𝑝 ; ⟨r, i𝑝⟩)
M3 = MergeM (M𝑝 ,M𝑐); S3 = MergeS(S𝑝 , S𝑐)
e′𝑐 = case ⟨r, i𝑝⟩l𝑝 of

Ð⇀pat [i𝑝/ivar 𝑥𝑐]; T ′𝑐 = (𝜏𝑐 , cl𝑐 , S3; M3; e′𝑐)

This case can be proved using similar reasoning as D-Par-DataConstructor-Join.

Case: D-Par-Step

[D-Par-Step]

S; M; e⇒ S′; M′; e′

T1, ... , (𝜏, cl, S; M; e), ... T𝑛 =⇒𝑟𝑝 T1, ... , (𝜏, cl, S′; M′; e′), ... T𝑛

Let Σ = Σ(cl), C = C(cl), A = A(cl), and N = A(cl) be the environments corresponding to the task

(𝜏, cl, S; M; e). We instantiate the new environment maps as:

Σ′ = Σ; C′ = C

By inversion on 3.2.5.1, the two obligations are to show that the resulting T′ is well typed, and that the

stores of all tasks in it are well formed. By the typing rule given in the premise of this lemma and by

inversion on T-Taskset, we can directly establish the well-typedness of the tasks in T. Using similar rea-

soning, we establish that the stores of all tasks in T are well-formed. Thus, there are only two remaining

obligations, namely to show that the task resulting from the sequential step is well-typed, and that its store

is well-formed. And by inversion on T-Task, in order to show that a task is well-typed, we must show that
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the expression it is evaluating is well-typed. Thus, there are two obligations that we must prove, namely

∅; Σ′; C′; A′; N ′ ⊢ A′′; N ′′; e′ : 𝜏 , and Σ′; C′; A′; N ′; M′ ⊢𝑤𝑓 S′; We can discharge both of these by using

Lemma B.2.5 for single thread preservation. There are three preconditions in order to use this lemma,

which are handled by the following case analysis.

(1) ∅; Σ; C; A; N ⊢ A′; N ′; e : 𝜏

By inversion on T-Taskset, and the typing rule given in the premise of this lemma, we know

that all tasks in the task set T are well-typed. Thus, we obtain the result

Σ; C; A; N ⊢𝑡𝑎𝑠𝑘 A′; N ′; (𝜏, cl, S; M; e). Then, by inversion on T-Task, we obtain the result that the

expression e is also well-typed. Thus, this obligation is discharged.

(2) Σ; C; A; N ; M ⊢𝑤𝑓 S;

By the well-formedness of the task set given in the premise of this lemma, we establish the

well-formedness of stores of all tasks in the task set T, and we obtain the result Σ; C; A; N ;T ⊢𝑤𝑓

S; M , thus discharging this obligation.

(3) S; M; e⇒ S′; M′; e.

This obligation discharges straightforwardly by inversion on D-Par-Step.

■

Lemma B.2.5 (Single Thread Preservation).

If ∅; Σ; C; A; N ⊢ A′; N ′; e : 𝜏

and Σ; C; A; N ; M ⊢𝑤𝑓 S;

and S; M; e⇒ S′; M′; e′

then for some Σ′ ⊇ Σ,C′ ⊇ C,

∅; Σ′; C′; A′; N ′ ⊢ A′′; N ′′; e′ : 𝜏

and Σ′; C′; A′; N ′; M′ ⊢𝑤𝑓 S′; .

Proof: The proof is by induction on the given derivation of the dynamic semantics.

Case: D-LetLoc-After-NewReg

[D-LetLoc-After-NewReg]

S; M; letloc lr = after 𝜏@l0r in e⇒ S′; M′; e

where ⟨r, ivar 𝑥⟩l0 = M̂ (l0r); r′ fresh
S′ = S ∪ { r′ ↦→ ∅ }; M′ = M ∪ { lr ↦→ ⟨r,&(r′, 0)⟩ }
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(1) The first obligation is to show that the result of the evaluation step is well-typed, that is

∅; Σ; C′; A′; N ′ ⊢ A′′; N ′′; e′ : 𝜏,

where 𝜏 = 𝜏@l′r
′ . This proof obligation follows straightforwardly by inversion on T-LetLoc-After.

(2) The second obligation is to show that the result of the evaluation step is well-formed, that is

Σ; C′; A′; N ′;T′ ⊢𝑤𝑓 S′; M′

The individual requirements, labeled

WF 3.2.5.2;1 WF 3.2.5.2;4, are handled by the following case analysis.

• Case (WF 3.2.5.2;1):

(lr ↦→ 𝜏) ∈ Σ ⇒

(⟨r, i1⟩ = M̂ (lr) ∧ 𝜏 ; ⟨r, i1⟩ ; S ⊢ew ⟨r, i2⟩) ⊕

(⟨r, ivar 𝑥⟩ = M̂ (lr) ∧

∃S′,M′,e′ .(𝜏, ⟨r, ivar 𝑥⟩, S′; M′; e′) = 𝐺𝑒𝑡𝑆𝑖𝑛𝑔𝑙𝑒𝑊𝑟𝑖𝑡𝑒𝑟 (T, 𝜏, ivar 𝑥) ∧

⟨r, i1⟩ = M̂′(lr) ∧

(𝐼𝑠𝑉𝑎𝑙 (e′) ⇒ 𝜏 ; ⟨r, i1⟩ ; S′ ⊢ew ⟨r, i2⟩))

By the well-formedness of the store given in the premise of this lemma, the above already

holds for all locations in the location environment M . The obligation discharges by inspecting

the only new location in M′, namely lr , which is fresh and therefore cannot be in the domain

of Σ.

• Case (WF 3.2.5.2;2): C′ ⊢𝑤𝑓𝑐𝑓 𝑐 ; S′

Of the requirements for this judgement, the only one that is not satisfied immediately by the

well-formedness of the store given in the premise of the lemma is requirement WF 3.2.5.3;3.

The specific requirement is to establish that:

(lr ↦→ after 𝜏@l′r) ∈ C ⇒

(⟨r, i1⟩ = M̂ (l′r) ∧ 𝜏 ; ⟨r, i1⟩ ; S ⊢ew ⟨r, i2⟩ ∧ ⟨r, i2⟩ = M̂ (lr)) ⊕

(⟨r, ivar 𝑥1⟩ = M̂ (l′r) ∧ (lr ↦→ ⟨r,&(r2, 0)⟩) ∈ M ∧ { r2 ↦→ h } ∈ S) ⊕

(⟨r, i1⟩ = M̂ (l′r) ∧ 𝜏 ; ⟨r, i1⟩ ; S ⊢ew ⟨r, i2⟩ ∧ (lr ↦→ ⟨r,&(r2, 0)⟩) ∈ M ∧ S(r) (i2) = &(r2, 0))

The second disjunct follows immediately by inversion on D-LetLoc-After-NewReg.

• Case (WF 3.2.5.2;3): A′; N ′ ⊢𝑤𝑓𝑐𝑎 M′; S′

The individual requirements, labeled WF 3.2.5.4;1 - WF 3.2.5.4;4, are handled by the following

case analysis.
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– Case Case (WF 3.2.5.4;1):

((r ↦→ lr) ∈ A′ ∧ lr ∈ N ′) ⇒

((lr ↦→ ⟨r, i⟩) ∈ M′ ∧ i > MaxIdx (r, S)) ⊕ (lr ↦→ &(r2, i2)) ∈ M′

By the well-formedness of the store given in the premise of this lemma, the above

already holds for locations in the environments A and N . The obligation discharges

by inspecting the only new location added to environments, namely lr . The second

disjunct, namely (lr ↦→ &(r2, i2)) ∈ M′, follows immediately by inversion on D-LetLoc-

After-NewReg.

– Case (WF 3.2.5.4;2)

((r ↦→ lr) ∈ A ∧ ⟨r, i𝑠⟩ = M̂ (lr) ∧ lr ∉ N ∧ 𝜏 ; ⟨r, i𝑠⟩ ; S ⊢ew ⟨r, i𝑒⟩) ⇒ i𝑒 > MaxIdx (r, S)

By inversion on T-LetLoc-After, lr ∈ N ′, and thus this case discharges immediately.

– Case (WF 3.2.5.4;3):

lr ∈ N ′ ⇒ ⟨r, i⟩ = M̂′(lr) ∧ (r ↦→ (i ↦→ K)) ∉ S′

Both conjuncts discharge immediately by inversion on D-LetLoc-After-NewReg. Since

(lr ↦→ &(r′, 0)) ∈ M′, we obtain ⟨r′, 0⟩ = M̂′, thus satisfying the first obligation. And

since r′ is fresh, (r′ ↦→ (0 ↦→ K)) ∉ S′ holds as well, thus discharging this case.

– Case (WF 3.2.5.4;4): (r ↦→ ∅) ∈ A⇒ (r ↦→ ∅) ∈ S

This case discharges because, from the premise of the lemma, this property holds for

the original environment A and store S, and, by inversion on T-LetLoc-After, continues

to hold for A′ and S′.

• Case (WF 3.2.5.2;4): 𝑑𝑜𝑚(Σ) ∩ N = ∅

Because it is a bound location, l ∉ 𝑑𝑜𝑚(Σ), and by inversion on T-LetLoc-After l ∈ N ′, which

discharges this obligation.

Case:

The cases for D-Let-Expr, D-Let-Val, D-LetRegion, D-LetLoc-Tag, D-LetLoc-Start, D-LetLoc-After, and D-

App are similar to the proof of preservation for sequential LoCal given in [65].

■
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An Efficient Compiler for Recursive Functions on Mostly Serialized Data.

FHPC, St. Louis, MO. September 29, 2018.
PL Wonks, Indiana University, Bloomington, IN. September 21, 2018.

Teaching

Associate Instructor, Indiana University

Spring 2023: CSCI P-536 Advanced Operating Systems.
Fall 2022: CSCI B-629 Topics in PL: Advanced Functional Programming.
Fall 2022: CSCI P-523 Compilers.
Spring 2022: CSCI P-536 Advanced Operating Systems.
Fall 2021: CSCI B-544 Security For Networked Systems.
Spring 2018: CSCI B-629 Topics in PL: Dependent Types.

Service

Department Editor: Hello World, ACM XRDS. 2022-present.
Program Committees:

ECOOP 2022, external review committee.

Artifact Evaluation Committees:

ECOOP 2022.
ESOP 2022.
POPL 2021.
ECOOP 2021.
PLDI 2021.



PLDI 2020.
ICFP 2018.

Technical Skills

Proficient in Haskell and C. Productive with C++, Rust, Standard ML, OCaml, and Nix. Familiar with many others.
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