MOSTLY-SERIALIZED DATA STRUCTURES FOR
PARALLEL AND GENERAL-PURPOSE PROGRAMMING

Chaitanya Sunil Koparkar

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements
for the degree
Doctor of Philosophy
in the Luddy School of Informatics, Computing and Engineering
Indiana University
June 2023

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

Doctoral Committee

Sam Tobin-Hochstadt, Ph.D.

Ryan R. Newton, Ph.D.

Daniel P. Friedman, Ph.D.

Lawrence S. Moss, Ph.D.

Jeremy G. Siek, Ph.D.

Milind V. Kulkarni, Ph.D.

April 26, 2023

Copyright @ 2023
Chaitanya Sunil Koparkar

iii

Acknowledgements

I want to thank my parents, Sulbha and Sunil, without whose support and encouragement I would never
have started graduate school, much less finished. They are the most loving parents one could wish for.
This dissertation is dedicated to my father, who is no longer with us. Baba, we miss you.

Jayati, my partner and best friend, is a constant source of love and support. She is the main reason I
could keep going these last two years. Without her, ’'m not sure I would have survived graduate school.
Thank you for everything, Jayati.

My advisor, Ryan Newton, was instrumental in getting me admitted into Indiana University. Not only
did he take a chance on me, he taught me how to do research and always went above and beyond to offer
help and steadfast support. I will forever be grateful for all he has taught me, technical and otherwise. In
2019, I had to make the difficult decision of not moving to Purdue with him. But he respected this, and we
continued our work together. Thank you, Ryan; I am fortunate to have been a part of your lab.

I want to offer special thanks to Sam Tobin-Hochstadt. He agreed to take me on as an advisee and
to chair my research committee, which allowed me to stay at IU. His non-stop support made the rest of
my journey very pleasant. And his technical insights and helpful feedback have made this dissertation
immensely better.

Thanks to my other committee members, Larry Moss, Jeremy Siek, Dan Friedman, and Milind Kulkarni,
for all they have done to help me over the years and for their suggestions to improve my research work.
Whatever little category theory I know, it’s because of Larry; he was kind and patient as I slogged through
the text and exercises. Dan spent a tremendous amount of time proofreading this dissertation.

Mike Rainey was always there to listen to my ideas and to help me refine them. I have learned a lot by
working with him. Thank you for your mentorship, Mike. I could not have gotten here without my other
collaborators on the Gibbon project—thank you Michael Vollmer and Laith Sakka.

Thanks also to all the PL. Wonks who made my time as a graduate student infinitely more enjoyable. I
would like to specially mention some Wonks regulars—Ryan Scott, Buddhika Chamith, Vikraman Choud-

hury, Andre Kuhlenschmidt, Sarah Spall, Rajan Walia, Tori Lewis, Paulette Koronkevich, Laurel Carter,

Andrew Kent, Caner Derici, Matthew Heimerdinger, and Fred Fu. Ryan, thank you for all the fun conver-
sations and for being a fantastic friend. Andre, thank you for generously hosting all the board game nights
and for all your kindness.

Thanks to my friends, Advait Marathe, Parichit Sharma, Andrew Holland, and Omkar Bhide; Bloom-
ington would not have been such a fun place to stay without you. I especially want to thank Omkar and
Spruha, who nursed me for a month when I broke my elbow. I am indebted to both of you. Advait, thank
you for being generally awesome.

My research was partly supported by the National Science Foundation, under the award CCF-1725679
and by the Luddy School with the Jose Blakeley Ph.D. Summer Research Award.

For Baba, who missed the end of this journey.

vi

Chaitanya Sunil Koparkar
MOSTLY-SERIALIZED DATA STRUCTURES FOR PARALLEL AND GENERAL-PURPOSE
PROGRAMMING

Implementing a functional programming language using pointer-free, serialized representations of alge-
braic datatypes has proved extremely efficient, especially for programs that operate over bulk tree-like
data. But is it only a domain-specific solution? Whether this approach is suitable for a general-purpose
language implementation hinges on whether it can be rounded out to also perform reasonably well for
programs that allocate data in small pieces and out-of-order. Also, while serialized representations work
well for sequential programs, there is an intrinsic tension between density and parallelism. As the name
implies, serialized data must often be read and written serially, due to the lack of pointers. These challenges
are the focus of this dissertation. We show that mostly-serialized data structures are a safe, efficient, and
practical foundation for a parallel and general-purpose programming language.

To support parallelism, first, enough indexing information must be left in the representation so that
parallel tasks can “skip ahead” and process multiple subtrees in parallel. Second, the allocation areas
must be bifurcated to allow allocation of outputs in parallel. we propose a strategy where form follows
function: where data representation retains pointers only insofar as parallelism is needed, and both data
representation and control flow “bottom out” to sequential pieces of work that are pointer-free. We present
Parallel Gibbon, a compiler that obtains the benefits of dense data formats and parallelism. we formalize
the semantics of the parallel location calculus underpinning this novel implementation strategy, and show
that it is type-safe. Parallel Gibbon exceeds the parallel performance of existing, mature compilers for
purely functional programs.

Next, we propose a new memory management strategy for a language with mostly-serialized data
structures. It uses a hybrid, generational garbage collector, where growable regions of memory are the
units of allocation. Regions are bump-allocated into a young-generation and objects are bump-allocated
within those regions. Minor collections copy data into larger regions in the old generation, which uses
region-level reference counting with another (backup) tracing collector. Implementing this approach re-
quires overcoming several challenges unique to the mostly-serialized, dense data representation strategy.
The resulting system maintains excellent performance for bulk traversal and allocation programs, while
greatly improving performance on other kinds of workloads. For small, out-of-order allocations where
this approach is weakest, the performance more closely resembles mature compilers that have been heav-

ily optimized for such programs, using traditional memory representations.

vii

Contents

List of Figures
List of Tables

Chapter 1. Introduction
1.1. Reasoning about performance of programs compiled with Gibbon
1.2. Parallelism and Serialization
1.3. Memory Management
1.4. Thesis statement and outline of this dissertation

1.5. Previously published work

Chapter 2. Background: LoCal and the Gibbon Compiler
2.1. A Primer on Location-Calculus
2.2. Compiling LoCal

2.3. Limitations of Gibbon

Chapter 3. Reconciling Parallelism and Serialization
3.1. Parallelism in Location-Calculus
3.2. Region-Parallel LoCal
3.3. Implementation

3.4. Evaluation

Chapter 4. Memory Management for Mostly-Serialized Heaps
4.1. Design
4.2. Implementation Details

4.3. Evaluation

Chapter 5. Accelerating Haskell tree-traversals: from Gibbon to GHC

5.1. Design and Implementation

viii

xii

O 0

11
12

13
13
18
22

26
27
28
47
51

63
64
80
82

90
92

5.2. Future Work

Chapter 6. Related Work
6.1. Data Processing and Layout Control
6.2. Serialized Data and Parallelism
6.3. Region-based Memory Management
6.4. Garbage Collection

Chapter 7. Summary and Future Work
7.1. Parallel Garbage Collection

7.2. Layout Optimizations
Bibliography
Appendix A. Sample Gibbon Programs

Appendix B. Type-Safety Proof for LoCalP?®"
B.1. Typing Rules for LoCal
B.2. Type-Safety

Curriculum Vitae

96

97
97
98
99
100

101
102
103

105

111

113
113
116

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

List of Figures

Standard in-memory representation of a binary tree.
Anatomy of a Gibbon object.
The tree in Figure 1.1 represented as a fully serialized Gibbon value.

mkList versus mkListSum.

Constant folding.

Example of LoCal’s sequential execution model.

Constructing a serialized linked-list.

Gibbon compiler architecture.

Run time representation of regions in Gibbon (and GC-Gibbon’s old-generation).
Data representation with pointers used for sharing (a) and random-access (b).
Reversing a linked-list.

A serialized heap with arbitrarily delayed collection in Gibbon.

Parallel, step-by-step execution of the program from Figure 2.1b.
Grammar of LoCalP®.

Extended grammar of LoCalP*" for dynamic semantics.

Extended grammar of LoCalP*" for static semantics.

Dynamic semantics rules (sequential transitions).

Dynamic semantics rules (parallel transitions).

A copy of the typing rule for LoCal data constructor given in [65].
Additional typing rule for type checking an in-flight data constructor.

Typing rules for a parallel task T, and a set of parallel tasks T.

14

17

18

19

20

22

23

25

29

31

32

32

33

35

37

37

37

3.10Metafunctions for merging task memories.

3.11The end-witness rule.

3.12Metafunction for linking fields of a data constructor.
3.13Derefrencing indirections in M.

3.14Heap layouts of a data constructor in various configurations.

3.15Parallel Versus Sequential Gibbon.

3.16Speedups relative to the fastest sequential baseline, which is Sequential Gibbon for all benchmarks.

3.17Remaining plots showing speedups relative to the fastest sequential baseline.

4.1 Part of the evacuation algorithm. Global definitions, helpers, and entrypoint to begin evacuation.

4.2 Continued from figure 4.1, core burning and forwarding algorithm for sharing maintenance.
4.3 Continued from figure 4.2, rest of the forwarding algorithm.

4.4 Root sets that have different traversal orders which are efficient.

4.5 Partially-written values in the young-generation.

4.6 An in-progress evacuation that illustrates how objects are forwarded and burned.

4.7 The representation of GC-Gibbon’s info-table in the Rust runtime system.

4.8 Run times of benchmarks using inputs of various sizes.

4.9 Run times of benchmarks using young-generations of various sizes.

4.10Run times of benchmarks using initial chunks of varying sizes.

5.1 gibbon-plugin’s API to use Gibbon as an accelerator in a Haskell program.
5.2 Run time of benchmarks in seconds.

5.3 A simple Haskell program that uses Gibbon as an accelerator via 1iftPacked.

A.1 Programs for fib, buildtreeHvyLf.

A.2 allNearest in Gibbon’s front-end language (Haskell).

B.1 A copy of the typing rules for LoCal given in [65]. See also Figure B.3.
B.2 A copy of remaining typing rules for LoCal given in [65].

B.3 A copy of remaining typing rules for LoCal given in [65].

Xi

39

39

40

40

47

55

60

61

66

67

68

70

73

75

81

87

88

89

93

93

94

111

112

113

114

115

1.1

3.1

3.2

3.3

4.1

4.2

4.3

List of Tables

Run time in seconds of mkList and mkListSum compiled with Gibbon to use serialized and

pointer-based representations.

Comparing fragmentation of sequential versus parallel Gibbon.
Comparison of Parallel Gibbon with MaPLe, OCaml, and GHC

Full evaluation details for MPL, GHC, and OCaml.

Run times in seconds of benchmarks run with different GC configurations.
Run times of out-of-order and small-allocation benchmarks in seconds.

Run times of in-order allocation and bulk-traversal benchmarks in seconds.

xii

57

59

62

84

86

86

Introduction

Functional languages, such as Haskell and dialects of ML, offer algebraic datatypes, a powerful lan-
guage based technology that can express many complex data structures and, nevertheless, provide a pleas-
antly high level of abstraction for application programmers. The high-level of specification of algebraic
datatypes leaves a great deal of wiggle room for a range of low level implementation strategies. The way
their structures are laid out in memory and how they are accessed by functions can have a major impact
on performance.

Most conventional approaches resort to using fully or mostly boxed representations of values, using
one heap object per data constructor as shown in Figure 1.1. Consuming such a value requires consuming
a full heap object, plus a header word, plus a word-sized pointer. This representation is efficient for random
access and shape-changing modifications, but not for workloads that allocate or process large values in
bulk. On such workloads, pointer-heavy representations are not favored by current trends in computer
architecture. Chasing pointers leads to scattered memory access patterns and poor data locality, which are
very inefficient. Programs that traverse and construct trees of algebraic datatypes are widely used across
all domains of computer science, ranging from compiler passes, to the web-browser Document Object
Model, to particle simulations with space-partitioning trees, and thus optimizing their performance has

wide-ranging benefits.

gEan
(L) 7
(L]2) [L‘4]

FiGure 1.1. Standard in-memory representation of a binary search tree—a collection of

heap objects linked with pointers. N is short for Node and L is short for Leaf.

1. INTRODUCTION

Tag Scalars Non-scalar child 1 Child 2
(3 1%)]
1 byte n bytes ? bytes ? bytes
Object (fixed)
\ J
Y

Object (extended)

FIGURE 1.2. Anatomy of a Gibbon object. Each object starts with a one-byte tag corre-
sponding to the data constructor within a sum type. The tag is followed by n bytes (known
at compile time) of scalar fields such as numbers, booleans etc. The non-scalar, or packed,
fields come next. Each packed field can contain an unbounded number of bytes which

cannot be known at compile time.

Representing values as pointer-free, serialized byte arrays can have huge performance advantages [26,
44, 38]. Recently, several lines of work have explored computing directly with serialized data representa-
tions of varying density. Libraries like Cap’N Proto [64], FlatBuffers [27], Haskell Compact Normal Forms
(CNF) [68] etc. allow a complete value to reside in a single contiguous chunk of memory. That is, the
start of the value, or, the root of the tree representing the algebraic datatype, and all its subtrees can be
allocated and stored in a single memory chunk using these libraries. The pointers between the subtrees are
still retained so that they can be reached and traversed efficiently, but they are transformed into relative,
offset-based pointers. Since it is serialized, this memory chunk can be stored on disk or sent across the
network, and crucially, the resident value can be traversed by clients without a separate deserialization pass,
thereby bypassing a major source of overhead.

Such efficiency is also achieved by Gibbon [66], a compiler for a polymorphic, higher-order subset of
Haskell!, which compiles its programs to C code, and employs whole-program compilation and monomor-
phization. Thanks to using pointer-free, serialized representations as the native representation of recur-
sive algebraic datatypes, Gibbon can harness both efficient IO to external devices, skipping traditional
(de)serialization like the aforementioned libraries, and faster traversals of data in memory, unlike previous
systems. Recursive traversals over irregular tree data are over 2X faster in Gibbon than the fastest existing
compilers, including ghc, gcc, java, ocaml, mlton, rust, chez, etc., and 3x and 10X faster than Compact Normal

Forms and Cap’N Proto respectively.

1A subset of “Strict Haskell” (-XStrict), specifically.

1. INTRODUCTION

[N 6 N 3 L 2 L] 4 L 7]

: tag “scalar left . right
b 1 N

) tag “scalar left right

Ficure 1.3. The tree in Figure 1.1 represented as a fully serialized Gibbon value. N is short

for Node and L is short for Leaf.

Gibbon uses depth-first layouts similar to virtually all (de)serialization frameworks and the aforemen-
tioned libraries for operating directly on serialized data. In the context of Gibbon, “serialized” refers not
just to storing subtrees consecutively in memory, but also a form of compaction: eliminating pointers be-
tween subtrees by inlining child structures directly into their parents where possible. Figure 1.2—which is
explained in more detail in Section 2.2.2—shows the anatomy of a Gibbon object. Gibbon uses growable
regions (essentially, memory buffers) as units of allocation. Each region contains a single value, which is
itself made up of numerous objects®. Objects living in the same region are packed side-by-side. Pointers
are retained, but they are the exception rather than ubiquitious.

A Gibbon data constructor is, by default, only a one-byte tag’, followed immediately by its fields.
Wherever possible, this tag occurs inline in a bytestream that hosts multiple objects. As such, values tend
to be compact in RAM and be laid out in contiguous blocks, which admit efficient linear traversals. With
this (mostly) contiguous layout, a structure can be reliably traversed in a linear fashion, and thereby reap
substantial benefits of modern optimizations such as hardware prefetching. For example, a data construc-
tor such as Node, in data STree = Node Int STree STree | Leaf Int |Empty, treats Int as a value type which is
inlined immediately after a (one-byte) tag, and the type STree is treated just the same! The next two fields
of type STree are inlined one after the other in the same region, as shown in Figure 1.3.

When pointers are needed for efficient operation of the program, the programmer could include ptr T
types explicitly, but it is more common to let the compiler automatically extend the datatype to include a
tagged indirection pointer, Ind (Ptr STree), as an implicit additional case to the sum type. Using such point-
ers, objects can point to objects in other regions, which is crucial to support sharing common structures.

2We use the term value to refer to logical values in the source language, and object to refer to the allocation resulting from a

single data constructor: e.g., a list versus a single cons-cell.

3A number assigned to each data constructor of a datatype; it starts at 0 and can go up to 255.

1. INTRODUCTION

The implicit inclusion of indirections is why Gibbon structures are only mostly serialized*. We will discuss
further details of including pointers in the representation in Section 2.2.3.

There are several advantages to working directly with serialized representations of data structures:

e Data can be read from disk or network without deserialization (e.g. via mmap).

e A serialized representation can take many times fewer bytes to represent than a normal pointer-
based representation, which improves performance of the memory subsystem.

e Since many objects are allocated in the same region, fewer memory allocations are needed to
create serialized structures.

e Data can be traversed significantly faster once in memory due to predictable, linear memory

accesses that are favored by optimizations like hardware prefetching.

But, while serialized representations work well for sequential programs, there is an intrinsic tension be-
tween density and parallelism. As the name implies, serialized data must often be read and written serially,
due to the lack of pointers. Also, Gibbon’s approach to data representation has proved effective for com-
piling tree-traversals. But is it only a domian-specific solution? Whether this approach is suitable for a
general-purpose language implementation hinges on whether it can be rounded out to also perform rea-
sonably well for programs that allocate data in small pieces and out-of-order. These challenges are the
focus of this dissertation. We show that mostly-serialized data structures are a safe, efficient, and practical

foundation for a parallel and general-purpose programming language.

1.1. Reasoning about performance of programs compiled with Gibbon

While Gibbon can compile and run all sorts of programs, certain programs receive a performance
boost while certain others receive a performance penalty. This penalty is because Gibbon and its serialized
representations favor a certain allocation pattern, and inefficiencies arise when programs stray from this
favored pattern. In this section we provide an intuition on how to estimate the performance of programs
compiled with Gibbon. We will return to this topic in Sections 2.2.2 and 2.3.

Gibbon’s allocation mechanism and the associated costs are quite different from other languages that
use pointer-based data structures. In those languages, each object created on the heap typically triggers
an expensive memory allocation (malloc)’. For example, constructing a linked-list in C will require one

4Indirection pointers are sometimes needed for the compiler to preserve the program’s asymptotic complexity, e.g., when

compiling a program that shares common data between two values, including newer values that reference older ones.

3Certain compilers use a bump pointer nursery to allocate objects; this is cheap and fast, but the unit of allocation is still

an individual object, and too many objects will eventually fill up the nursery and trigger a collection. On the contrary, objects

4

1. INTRODUCTION

memory allocation per cons-cell. This is not true in Gibbon, however, as it uses growable regions; each
region contains a single value which is made up of numerous objects packed side-by-side. Writing multiple
objects in a region doesn’t require any memory allocations and is therefore cheap. As a result, constructing
a linked-list in a single region in Gibbon is quite efficient. But, allocating a region itself requires a memory
allocation. A region also has some metadata associated with it that must be tracked and kept up-to-date,
which adds further overhead. Thus, to reason about a program’s performance we must reason about its
region allocation behavior. How might we do that?

As a rough approximation, simple naturally recursive functions that construct values in order are very
efficient, since they allocate only one region. Functions which construct values out of order need to allocate
more regions and might not always perform well. Tail recursive functions usually need to allocate one
region per recursive call and are therefore slow in Gibbon. (In Chapter 4, we address these performance
sore spots by making region allocations efficient using a modified memory management system.) We

explain what in-order construction means and other details regarding it next.

1.1.1. Region allocation. Values constructed using a data constructor are called packed values and
these are stored in regions®. Gibbon allocates one region to store each packed value. Within a region,
all objects must be written in the same order they appear in the region. Intuitively, we can imagine each
region having a single write cursor that starts at the beginning and chugs along the region performing
writes in a continuous fashion. The write cursor is not allowed to jump forward. Objects of recursive
types can be arbitrarily large. Thus, we cannot delay writing an object and jump forward to a byte-address
after it, because we cannot know how much space will the delayed object require. We learn the size of an
object/value only after it is completely written.

Gibbon uses “location inference” to decide what region an object belongs to and also where in that
region it will be, relative to other objects. Without knowing all the details of the location inference pro-
cedure, one simple rule is quite helpful in understanding how a value will map on to a region. When all
packed fields of a data constructor are initialized in order, the constructor tag and all the fields will be
written in a single region. The tag will be written at the beginning, the first field will be written next,
and so on. When a packed field of a data constructor is initialized out of order, it will be written in its own

created in a region do not fill up the nursery and thus don’t trigger a collection. But, allocating too many regions will trigger a
collection.

®Numbers, booleans etc. are called scalar values and these are stored on the stack or in registers.

1. INTRODUCTION

=z

ol

(el 1] o[1]ina] ¢]

J

(cl2]c[1]n] (rup| 3| ¢ [2[md| e]
(a) In-memory representation of a linked-list con- (B) In-memory representation of a structure con-
structed by mkList. C is short for Cons and N is short structed by mkListSum. Tup is the tag for the tuple,
for Nil. C is short for Cons, and N is short for Nil.

FIGURE 1.4. mkList versus mkListSum.

separate region. That’s because the final byte-address of this field in the original region can only be known
after its preceding fields have been written—we cannot know the size of these preceding fields sooner.

For example, given a data constructor (K x y z), if the program binds x first, y next, and z last, this
is considered an in-order construction and this entire value will be allocated in a single region. But, if the
program binds z first, x next, and y last, this value will not be allocated in a single region. Here we cannot
statically know how much space will x and y occupy before they’re written. Thus, these fields have to be
written in the region first, and only then can we know the final byte-address where z should be written. But
since z has to be initialized before x and y, it has to be allocated in a separate region. Next, an indirection
pointing to the separately allocated z will be written at the byte-address after y, to avoid copying z.

If the data dependencies allow it, we can transform the program so that the fields of data constructors
are always initialized in order. For example, if x, y and z can be initialized independently of each other, we
can modify the program so that it initializes these fields in the desired order. But if x or y depend on z in

some way, then their order of initialization cannot be changed.

1.1.2. In-order construction, example. The following Gibbon function constructs a list value in
order. Here a single region will be created and the entire list will be written within this region. (The final
result is similar to CDR-coding [15] techniques developed previously.)

mkList :: Int — List

mkList @ Nil

mkList n = Cons n (mkList (n-1))

1. INTRODUCTION

Benchmark Serialized Repr. Pointer-based Repr.

mkList 0.020 0.043
mkListSum 0.610 0.079

TaBLE 1.1. Run time in seconds of mkList and mkListSum compiled with Gibbon to use seri-

alized and pointer-based representations.

Each function’ is given its own output region that is used to write the function’s output. Let us consider
the two cases of mkList. The case when the input number is ¢ is trivial; the constructor Nil has no fields and
therefore a tag corresponding to Nil can be written in the output region directly. The second case is also
straightforward; cons only has one packed field and therefore the tag corresponding to Cons, the number
n, and the recursively constructed list of length (n-1) can all be written to the output region directly.

Figure 1.4a shows the structure Gibbon constructs.

1.1.3. Out-of-order construction, example. Let us now consider a slight variation of mkList that
returns a tuple containing a list and the sum of its elements:
mkListSum :: Int — (Int, List)
mkListSum @ = (@, Nil)
mkListSum n = let y = mkListSum (n-1) in
case y of

(sum, 1ls) — (n + sum, Cons n 1s)

The case when the input number is 0 is trivial like before. But the second case is quite different. Here the
final output value of the function depends on the value y resulting from the recursive call mkListSum (n-1).
Thus, y has to be initialized first. But y cannot be initialized in the function’s output region because y is
not the first packed object in the output and also because the components of y appear in a different order
in the final output—it has to be initialized in its own separate region. We can now pattern match on y
to extract its components. Afterwards, the tag corresponding to the tuple (Tup), the number (n+sum), the
tag corresponding to Cons, the number n, and an indirection pointing to the list 1s (contained within y)
will be written in the output region. Thus, mkListSum will allocate a separate region for each recursive call.

Figure 1.4b shows the structure Gibbon constructs.

Functions that return a scalar type do not use an output region.

1. INTRODUCTION

1.1.4. Performance evaluation. Table 1.1 shows the run time performance of these functions com-
piled with Gibbon to use serialized and pointer-based representations. We use a single-socket Intel E5-2699
18 core machine with 64GB of memory and running Ubuntu 18.04 for this experiment. mkListSum performs
more work of allocating and pattern matching on tuples compared to mkList, but they are algorithmically
quite similar to each other. Correspondingly, their run time is in the same ballpark in the pointer-based
representation. But this is not true for the serialized representation where mkListSum is 30X slower than
mkList! In fact, mkListSum with serialized representation is 8x slower than in pointer-based representation
as well. Of course, the excessive region allocations are to blame here. A slight change to the program has
degraded its performance significantly. Presently, Gibbon doesn’t warn programmers when a function has
poor region allocation behavior like mkListSum. We plan to add this feature in the future. Other functions
such as foldLeft versus foldRight have similar performance characteristics—foldRight is significantly more

efficient since it allocates fewer regions.

1.2. Parallelism and Serialization

The lack of pointers makes running parallel computations over serialized representations challenging.
For example, to sum all the leaf values of a tree node in parallel, we need to access its left and right subtree
simultaneously. In a serialized representation, the only way to reach the right subtree is to walk over the
left subtree first to find its end, which essentially sequentializes the whole computation. To change that,
first, enough indexing information must be left in the representation so parallel tasks can “skip ahead” and
process multiple subtrees in parallel. Second, the allocation areas must be bifurcated to allow allocation of
outputs in parallel.

In this dissertation we propose a strategy where form follows function: where data representation re-
tains pointers only insofar as parallelism is needed, and both data representation and control flow “bottom
out” to sequential pieces of work that are pointer-free. That is, granularity-control in the data mirrors
traditional granularity-control in parallel task scheduling. We demonstrate this solution by extending the
Gibbon compiler with support for parallel computation, introducing Parallel Gibbon. We also extend Gib-
bon’s typed intermediate language, adding parallelism and give an updated formal semantics (Section 3.2).

In addition to tree traversals, we show that Parallel Gibbon can efficiently compile other parallel pro-
grams, such as sort and search algorithms (Section 3.4) to match or exceed the performance of the best

existing parallel functional compilers. We choose a functional focus for three primary reasons:

1. INTRODUCTION

e Many tree traversals have different input and output types—as in a compiler pass that converts
between intermediate languages—which necessitates out-of-place traversals even in an imperative
language.

e Even pure programs can use mutable data, via linear types. (Gibbon uses these and eschews the
IO monad.)

o The purely-functional parallel Gibbon programs considered in this work are intrinsically data-race

free.

The last point is worth emphasizing: every time a language adds both parallel constructs and mutable data,
it enables data-races and must define a memory model to give them meaning. In this work, we extend Gib-
bon with linearly-typed primitives for mutable data® (Section 3.3.6), while keeping the language race-free.
we claim that linearly-typed mutable data, efficient data representation, and compiler-supported paral-
lelism are a synergistic combination. In Parallel Gibbon programs, as in other purely functional parallel
programs, parallelism annotations not only don’t introduce races but also do not affect program semantics,
meaning that these programs are deterministic as well as data-race free.

Ultimately, we believe that this work shows one path forward for high-performance, purely-functional
programs. Parallelism in functional programming has long been regarded as theoretically promising, but
has a spottier track record in practice, due to problems in runtime systems, data representation, and mem-
ory management. Parallel Gibbon directly addresses these sore spots, showing how a purely-functional
program operating on fine-grained, irregular data can also run fast (sequentially) and parallelize efficiently.
This complements more well-trodden areas of compiler research on parallelism, such as dense and sparse
collective operations on arrays [5, 1, 46, 13]. That is, the approach described in this paper—for general-
purpose, recursive functional programs, including tree traversals—could be combined with targeted EDSLs
or libraries implementing additional parallel programming idioms, such as Haskell’s Accelerate [16]. Both
determinism and data-race-freedom would be compositional within the functional-parallelism setting. In-
deed, we have taken the first steps in this direction, adding a small set of parallel array primitives to Gibbon

(Section 3.3.6).

1.3. Memory Management

In classic region calculi [62, 60], regions can be immediately deallocated at the end of their lexical

scope. On the other hand, Gibbon’s indirection pointers can cause a region to stay alive beyond its lexical

8Leveraging the Linear Haskell [9] extensions now available in GHC 9

9

1. INTRODUCTION

scope, for example if a pointer to it is captured by another region which is still in scope. Thus, an additional
garbage collection scheme is needed to free regions that live beyond their lexical scope.

There have been previous incomplete answers to memory management based on regions, which lack
sufficiently prompt deallocation. Prior work on Gibbon used a combination of region-based memory man-
agement, with region-level reference counting [34]. Like the early work on MLkit[60] (or more recent
work on UrWeb [19]), object lifetime depends on the lexically-scoped region it is assigned to. For exam-
ple, if an object is assigned to the “global region” it may not be freed until the end of program execution,
even if it became unreachable much earlier than that. In contrast, while tracing collectors are not garbage
freethey can bound (unreachable) garbage to, e.g., half of heap size using a semi-space collector, but these
region-based alternatives cannot.

Consider a program that repeatedly inserts and deletes from a balanced tree (we will later return to
this in Section 2.3.3). Each insertion of an element allocates log(N) tree nodes and makes log(N) unreach-
able, on average. Such a program will leak memory over time with prior region-based solutions (due to
delayed collection), but will use bounded space with a traditional garbage collector (GC). No practical,
general-purpose automatic memory management system can fail to free memory in this scenario. For that
reason, MLKit later added backup garbage-collection within regions [23]. UrWeb, on the other hand, fills
a specialized role where allocated memory lasts only as long as a web request. But what about Gibbon and
its mostly serialized approach to data management for executing Strict Haskell code?

We propose a garbage collector that takes Gibbon from a domain-specific tool for tree traversals to
a general-purpose functional language implementation. In this new system named GC-Gibbon, we adopt
the tried-and-true design of the tracing, generational collector, which is used by many state-of-the-art im-
plementations of functional languages. Such a moving collector makes for a good match with Gibbon’s
mostly serialized heap, where compactness and linear layout can be maintained opportunistically, as the
collector copies values during collections, eliminating pointers during copying. The fast bump allocated
young-generation also makes region allocations quite efficient. We employ reference counting in the old
generation because Gibbon’s regions contain many objects on average, especially after collection, so the
overhead of (non-deferred) reference counting is amortized at the region level. Along with these advan-

tages, there are new challenges to address, including:

e Gibbon’s regions contain dense byte-aligned data and hence have no header words or other

padding or extra space.

10

1. INTRODUCTION

e Indirection pointers result in pointers into the middle of packed data structures, at arbitrary
byte offsets.

e Regions contain partially-written values, for example, a tree node with a left field but no right
field (yet).

e Partially-written values grow over time, in addition to allocating new values (that comprise
multiple serialized objects).

e Gibbon programs have new kinds of roots—they include not just the usual local variables, but

implicit cursor variables that point at the boundaries of objects in regions.

1.4. Thesis statement and outline of this dissertation

With the above background, I can now state the thesis:

Mostly-serialized data structures are a safe, efficient, and practical foundation for a par-

allel and general-purpose programming language.
This dissertation supports this thesis as follows:

e serialized data structures: Recent work defined a type-safe language called the Location Cal-
culus [65] that formalizes the notion of programming with serialized data structures. I give back-
ground on LoCal and the Gibbon compiler in Chapter 2.

e parallelism: In Chapter 3, I extend LoCal to formalize a parallel location calculus that supports
task parallelism and show that the resulting language—named LoCal?* —is type safe. This ex-
tension requires adding back pointers to the representation in a limited way, thus making the
representation mostly-serialized.

e general-purpose: I demonstrate the generality of this approach by showing that it’s possible to
retain Gibbon’s strong performance on tree-traversals where the serialized data approach is most
effective and also improve Gibbon to achieve reasonable performance on out-of-order small allo-
cations where the approach is weakest, more closely resembling mature compilers and runtime
systems that have been heavily optimized for such programs, using traditional memory represen-
tations. The key here is a novel memory management strategy that I describe in Chapter 4.

e efficiency: In Chapters 3 and 4, I defend the efficiency of the contributions by showing per-
formance results for a variety of benchmarks. To study the garbage collector’s performance, I
compare it to other systems with highly optimized and mature collectors such as GHC [39] and

Java [21]. To study the performance of LoCalP?" I compare it to other languages and systems that

11

1. INTRODUCTION

support efficient parallelism for recursive, functional programs such as MaPLe [67], Multicore
OCaml [56] and GHC.

e practical: I defend the practicality of this approach by showing how a language like Haskell can
be compiled to use serialized data structures. Gibbon is already a whole-program compiler that
can compile a subset of Haskell. In addition to this, I show in Chapter 5 how it could be used as

an accelerator for a portion of a big Haskell application that is compiled and run using GHC.

1.5. Previously published work

This dissertation is based on research done jointly with other collaborators, which appears in the

following papers:

e Chaitanya Koparkar, Vidush Singhal, Aditya Gupta, Mike Rainey, Michael Vollmer, Sam Tobin-
Hochstadt, Milind Kulkarni, Ryan R. Newton. 2023. Garbage Collection for Mostly-Serialized
Heaps. Submitted to ICFP 2023.

e Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind Kulkarni, and Ryan R. Newton. 2021.
Efficient Tree-Traversals: Reconciling Parallelism and Dense Data Representations. In Proceedings

of the ACM on Programming Languages, Volume 5, Issue ICFP. (ICFP 2021)

And it builds on the Gibbon compiler and its LoCal intermediate language which were introduced in the

following papers; while I was a collaborator on these, I consider them as prior background work:

e Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni, and Ryan R.
Newton. 2019. LoCal: A Language for Programs Operating on Serialized Data. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
2019).

e Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka, Chaitanya Koparkar, Milind Kulka-
rni, Sam Tobin-Hochstadt and Ryan R. Newton. 2017. Compiling Tree Transforms to Operate on
Packed Representations. European Conference on Object-Oriented Programming, 2017. (ECOOP
2017).

12

Background: LoCal and the Gibbon Compiler

In this chapter we give a high-level overview of LoCal and the Gibbon compiler. We will use the
program given in Figure 2.1a as an example. Because these techniques for compiling tree-traversals are
directly applicable to compilers themselves, we use a miniature compiler pass as an example. The example
defines a datatype Exp which represents the abstract syntax of a language that supports integer arithmetic,
and a function constFold that implements constant folding for this language. Constant folding is a common
compiler optimization in which expressions with constant operands are evaluated at compile time, thus
improving the run-time performance. But here we are trying to optimize the performance of the constant
folding pass itself rather than the performance of the program produced by constant folding. constFold
walks over the abstract-syntax-tree, and substitutes all expressions of the form (Plus (Lit i) (Lit j)) with
(Lit (i+j)). We only show a simplified constFold — for example it doesn’t recur on the children of Plus
before checking if they’re literals — to keep it simple enough to serve as a running example.

The program in Figure 2.1a is written using the front-end language for Gibbon, a polymorphic, higher-
order subset of Haskell, with strict rather than lazy evaluation. The (||) operator used on line 14 denotes a
parallel tuple — it marks its operands to evaluate in parallel with each other. But with a purely functional
source language, it is semantically equivalent to a sequential tuple—i.e. replacing all “||” occurences with
“,” yields a valid program—and should be treated as one for now. We will return to this topic in Chapter 3.

Gibbon uses LoCal (short for location calculus) as an intermediate representation (IR) with explicit
byte-addressed, mostly-serialized data layout. To go from the vanilla Haskell front-end language to LoCal,
it performs location inference, a variant of region inference [62, 60], on the input programs. The LoCal IR
code generated by Gibbon for the constFold function is shown in Figure 2.1b. In the following, we use it to

sketch out how LoCal works.

2.1. A Primer on Location-Calculus

LoCal is a type-safe IR that represents programs operating on densely encoded (serialized) data. In

LoCal, all values reside within regions. Abstractly, a region is an unbounded storage area for raw data,

13

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

1

11

12

13

14

15

16

17

constFold

data Exp = Lit Int

| Plus Exp Exp
| Sub Exp Exp

| Let Sym Exp Exp

Exp — Exp

constFold exp = case exp of
Lit i — Lit i

Plus el e2 —

case (el, e2) of
(Lit i,Lit j) — Lit (i+3j)
_ — let (e3,e4) =
(constFold el ||
constFold e2)

in Plus e3 e4

Sub el e2 —

1 constFold:: VYL ™. Exp@L — Exp@l"
2 constFold [[;™t ;2] exp = case exp of
3 Lit (i:Int@L") — (Lit L™ i)

4 Plus (el: Exp@l,*) (e2: Exp@l,) —
5 case (el,e2) of

6 (Lit(i:Int@l""), Lit(j:Int@l;™)
7 — (Lit B (i+3))

8 _ >

9 letloc 3™ = L™ + 1 in

10 let e3 Exp@l3"? =

11 constFold [I,”' I3"2] el in
12 letloc 2 = after (Exp@Il53"2) 1in
13 let e4 Exp@ly? =

14 constFold [[," 142] e2 in
15 (Plus ™ e3 e4)

16 Sub (el: Exp@l,') (e2: Exp@l,) —
17

(a) Constant folding written using the front-end lan-

guage for Gibbon (Haskell).

a mini-heap unto itself. All programs make explicit not only the region to which a value belongs to,
but also a location at which that value is written. In LoCal notation, a location I” resides in region r.
Locations are fine-grained indices into a region (memory addresses), but unlike pointers in languages like
C, they can be written to just once and arbitrary arithmetic on locations is not allowed. Locations are only
introduced relative to other locations. Once allocated at a particular location, a value cannot be shared
with another location (within the same region or across regions), and it has to be copied to allocate it at a

different location. In practice, the Gibbon compiler supports sharing using pointers, which we discuss in

(B) Figure 2.1a compiled into LoCal IR by Gibbon.

Ficure 2.1. Constant folding.

Section 2.2.3.

14

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

A new location is either: at the start of a region, one unit past an existing location’, or afterall elements
of a value rooted at an existing location. In the program given in Figure 2.1b, the location 5" is one past
the location L™ (line 9) and 4" is after every element of the value rooted at location 5" (line 12). This
serial ordering imposed on locations is what serializes the resulting value in heap memory. Any expression
that allocates takes an extra argument: a location-region pair that specifies where the allocation should
happen. The types of such expressions are decorated with these location-region pairs. For example, the
(Lit L™ i) data constructor (line 3) allocates a tag at location J, in region r,, and has type (Exp@L"™). Any
scalar arguments passed to a data constructor, such as the unpacked integer i in this case, are allocated
immediately after the tag. Functions may be polymorphic over any of their input or output locations, and
these locations are provided at call-sites. In the example, the function constFold is polymorphic over an
input location /;* and an output location [,"?, and values for these are given at all call-sites. In spite of the
forall quantifier in its type signature, the input and output regions given at its call-site must be distinct
(r1 # rp) to prevent overwrites. This property is checked by LoCal’s type-system (described in Section 3.2.3),
which makes multiple writes to any location illegal —with the use of a nursery environment— ensuring that

function calls like (constFold [L,™ L,"*] x) don’t type check.

2.1.1. Sequential execution model. LoCal has a dynamic semantics which can run programs se-
quentially [65]. In this model, regions are represented as serialized heaps, where each heap is an array
of cells that can store primitive values (data constructor tags, numbers, etc). A write operation, such as
the application of a data constructor, allocates to a fresh cell on the heap, and a read operation reads the
contents of a cell. Performing multiple reads on a single cell is safe, and the type-system ensures that
each cell (location) is written to only once. At run time, locations in the source language translate to heap
indices, which are the concrete addresses of the cells where reads/writes happen. Computing addresses of
locations which are at the start of a region, or one past another location is straightforward — the addresses
get initialized to @ and (prev + 1) respectively. But evaluating an after expression, to get an address one
past the end of another, variable-sized value, requires more work.

A naive computational interpretation of this after is to simply scan over a value to compute its end.

In LoCal’s formal model, this is referred to as the end-witness judgment. Locations computed via after are

ILoCal’s formalism uses an abstract unit, namely a heap cell, thus abstracting over computing exact memory addresses until
run time. Also, it only permits binding a location that’s one cell past an existing location. Practically, one cell is equal to one byte
in Gibbon. Also, Gibbon allows a location to directly cross N bytes to efficiently support multi-byte scalar values such as integers

or floating point numbers.

15

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

used during both read and write operations. For example, when a LoCal case expression pattern matches
on (Plus el e2), it has to scan past e1 in order to know the starting address of e2, which adds O(n) amount
of extra work in a fully serialized representation! In practice, if values are read in the same order in which
they were serialized, a linear scan can be avoided by tracking end-witnesses that are naturally computed
in the evaluation of the program, for example, by having every read return the address of the cell after
it. Intuitively, we can imagine there being a single read pointer that is used to perform all reads in the
program. It always points to the next cell to be read on heap, and each read advances it by one. When
the program starts executing, the read pointer starts at the beginning of the heap and it chugs along in a
continuous fashion. Allocating a serialized value can be thought of in a similar way — that there is a single
allocation pointer that starts at the beginning of the heap, and moves along its length performing writes,
as illustrated in Figure 2.2b. To avoid changing the asymptotic complexity of programs which read values
out-of-order, the Gibbon compiler by default inserts some offset information— such as pointers to some
fields of a data constructor— back into the representation, as I discuss in Section 2.2.3. But this doesn’t

allow out-of-order allocations, which will be needed to add parallelism to LoCal (Chapter 3).

2.1.2. Sequential execution model, example. To make this execution model concrete, let us go
over a step-by-step trace of the semantics executing constFold on (Plus (Lit 20) (Plus (Lit 10) (Lit 12))).
The execution trace is given in Figure 2.2. The store S maps regions to their corresponding heaps, and
the location map M maps symbolic locations to their corresponding heap indices. The evaluation starts
at (constFold [;"] e), and is given a store containing a fully allocated input region r; and an empty
region r; to allocate the output, along with a location map containing the locations ;" and I, initialized
to the starting addresses of these regions. Since the input region has a P1us at the top, execution continues
at line 5. The pattern match binds the locations I;' and l;‘ to the addresses of the sub-expressions (Lit 20)
and (Plus (Lit 10) (Lit 12)) respectivelyz. Since both the sub-expressions are not constants, execution
continues at line 10. Then, the output location of the first sub-expression, I3"2, is defined to be one past

I,", and constFold is invoked recursively on this sub-expression. Step 4 copies® the first sub-expression

%The execution model binds unique locations each time. For example, when execution reaches this pattern match for the
first time, the model will use a unique suffix #1 to bind locations ;' #1 and 121#1 and update all uses of I’ and l;l to use this fresh
version. When execution reaches this pattern match again, perhaps due to a recursive call, it will bind locations I #2 and l;l#Z,

and so on. We don’t show the #n suffix here on any location to simplify presentation.

3This value is copied because line 3 in Figure 2.1b has a data constructor (Lit ;" i) on the right hand side of the case
alternative. If we update the program to return the input expression exp directly, Gibbon would allocate a pointer and the value
(Lit 2@) would be shared between the input and the output regions. We discuss how sharing works in Section 3.3.3.

16

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

DS = {r, - (0P, 151,220, 0 E

30P,4L,5-10,60L,7-12}, ~ap
r; = &}
M = {l; = <r,00, |5 = (1,00}

DM ={..., 1,00 <r, 1), 1,0 <ry,30}

OM=1{.., 15,1}

® constFold [(ry, 1), <rp, 1]

DM=1{_ 1,2}

DS = {13 fo Lo L, 2 208 o |[L|20

®M=1{.,1° (r,3} "o ap

@ constFold [(ry,3), <ry,3)]

DM =1{..., L' (r, 4, It = (ry,6)}

S = [y e Loy 3L, 4022} © |L|20[L]22]
®S={.,Nn-{. 0P} "o AP
DS =1{..., r;»{0~P, 151,220, O\ P ‘ L ‘20‘ L ‘22‘

3-1,4022} ~ap
(a) (B)

FIGURE 2.2. (a) Sequential, step-by-step execution of the program from Figure 2.1b, and
(b) the heap operations corresponding to the output region r,. Each step is named after its
line number in the program and only shows the changes relative to the previous step. AP

is the allocation pointer. P is short for Plus, and L is short for Lit.

by writing a tag L (short for Lit), followed by the integer 20 on the heap. Then, the output location of
the second sub-expression, I;"?, is defined to be one past every element of the first sub-expression, which
occupies two cells after the 0" cell. Thus, I,"”* gets initialized with the address of the 3" cell. constFold is
now invoked recursively for the second sub-expression. Following similar steps, the second sub-expression
is allocated at [,"%. Since the second sub-expression is a Plus with constant operands, it is transformed to
(Lit 22). Finally, Step 16 writes the tag P (short for plus) which completes the construction of the full

expression, (Plus (Lit 20) (Lit 22)).

2.1.3. Another example, constructing a serialized linked-list. Figure 2.3b shows the Haskell
source for a simple mkList function, which compiles into the intermediate LoCal code in Figure 2.3a. This

code operates as follows. The arguments of mkList include the number n and a symbolic location /", where

17

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

data List = Cons Int List | Nil mkList :: Int — List
mkList @ = Nil
mkList :: V [". Int — List@Il" mkList n = Cons n (mkList (n-1))
mkList [I"] n =
ifn == & then Nil I else (B) mkList’s starting Haskell source code.

letloc Li7 =1" + 9 in

let tail: List@lL" = 1byte 8bytes
mkList [47] (n-1) in [c \ nl|c \n1\}
Cons I" n tail kr kw
(a) mkList compiled into LoCal IR by Gibbon. (c) In-memory representation of a linked-list

constructed by Figure 2.3a. C is short for Cons.

Ficure 2.3. Constructing a serialized linked-list.

the resulting list of length n will be allocated. This allocation technique is a form of destination-passing
style [53]. If n is zero, mkList simply allocates Nil at location I”. Otherwise, it starts constructing a cons
cell. First it binds a location [;" that is 9 bytes past the location " (one byte for the cons tag and 8 bytes
for the integer). Next, it recursively constructs a list of length (n-1) at location ;". Then it writes the cons
tag and the integer n starting at location [”, which completes the construction of this cons cell. Gibbon’s
location inference algorithm places the cons cell and its tail within the same region because the allocations
in mkList happen in order. The resulting list is shown in Figure 2.3c; it uses a compact structure similar to
CDR-coding [15]. If the allocations were to happen out-of-order, such as when reversing a linked-list, the

resulting list will not be compact. We will return to this topic in Section 2.3.1.

2.2. Compiling LoCal
In the following, we discuss how the Gibbon compiler compiles and runs LoCal programs.

2.2.1. Compiler structure. Gibbon’s overall architecture is shown in Figure 2.4. It is implemented
as a micropass, whole-program compiler for a polymorphic, higher-order subset of Strict Haskell (option
-xstrict), which generates C code at the end. It employs monomorphization and specialization to optimize
programs at the source language level. Within Gibbon, tuples, and built-in scalar types like Int, Bool etc. are
unboxed (never require indirection pointers). To go from the vanilla Haskell front-end language to LoCal,

it performs location inference, a variant of region inference [62, 60], on the input programs. It performs

18

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

Source LoCal NoCal

i (AR /0 |
| Typecheck [| FindTraversals [} Unariser :
| Simplify _--TF7~ RandAccess | | | GodeGen :
! . I'| 1 Indirections [|
I InferLocations ! | 1 |
! I/ 1 RouteEnds :

I

] |

ToCursors

FIGURE 2.4. Gibbon compiler architecture.

full region/location type checking between every pair of passes on the LoCal intermediate representation
(IR). After a series of LoCal=LoCal passes, the program is lowered to a second IR, NoCal. NoCal is not
a calculus at all, but a C-like low-level language where memory operations are made explicit. Code in
this form manipulates pointers into regions that are called cursors because of their (largely continuous)
motion through regions. NoCal is internally represented as a distinct AST type, with high level (non-
cursor) operations excluded. The final backend is completely standard. It eliminates tuples in the unariser,
performs simple optimizations, and generates C code. Because of inter-region indirection pointers, a small

runtime system is necessary to support the generated code, as we describe next.

2.2.2. Regions, objects and chunks. In this section we describe Gibbon’s runtime system that is
is responsible for its region-based memory management. In brief, it uses region-level reference counts.
Each region is implemented as linked-list of contiguous memory chunks, doubling in size each time. This
memory is write-once, and immutability allows it to track reference counts only at the region level. Exiting
a letregion decrements the region’s reference count, and it is freed when no other regions point into it.

Every region itself resembles a heap with a single allocation pointer, which is used to perform all writes
in it. The allocation pointer always points to the next available cell on the heap, and new objects are bump
allocated. Bump allocation is the mechanism Gibbon programs use to achieve efficient, linear allocation
patterns, such as that of mkList, where the result value (e.g., list) is laid out in a single region. But if a
function’s allocation pattern differs, such as when reversing a linked-list or when building a binary tree
by allocating its right subtree before the left, the resulting value is placed across multiple regions. Even
in such cases where allocations happen out-of-order, Gibbon could place the result in a single region by
inlining all values allocated in intermediate regions. Gibbon does not, because doing so would create extra
work for copying data, and often worsen the asymptotic complexity of the input program. As such, Gibbon

programs tend to feature mixed allocation patterns, and therefore tend to give rise to complicated memory

19

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

“-2Region metadata

First % H
chunk |-+++- EoC @ | []1k| .| S refcount
= Rl
Second | _........oocoper. | @ |2k | |1stohunk outset
chunk -

Inbound cross-region indirection

FIGURE 2.5. Run time representation of regions in Gibbon (and GC-Gibbon’s old-
generation). This particular logical region is made up of two chunks, with an End-of-
chunk pointer linking the data. There’s an incoming tagged indirection which causes the
refcount to be 1. Pointers occurring in the data representation are shown with solid ar-

rows, whereas other implementation related pointers are shown with dashed arrows.

layouts, wherein some intermediate values are allocated in separate regions and are shared using pointers
(as we explain in Section 2.2.3).

There are two subcomponents to each object: there is the fixed portion of an object, consisting of a
tag, and any constant-sized fields such as integer scalars. Then there is the extended portion of the object
which fills a variable number of bytes due to child objects being “inlined” within its representation. Even
the extended object may be smaller than the complete logical value, which would include all memory
reachable by the transitive closure of any indirections.

Gibbon allocates a constant-sized chunk of contiguous memory for each fresh region, as Figure 2.5
shows. When this chunk is exhausted, a new one which is double in size is allocated and linked with the
previous one using a pointer. This doubling policy is used up to an upper bound, after which constant-sized
new chunks are allocated *.

In order to detect if a chunk is exhausted, every write operation needs to know where the current
chunk ends, so that it can perform bounds checking. For this reason, every location is dilated to be a pair
of (alloc,end) pointers at run time. To mark that the serialized stream of data continues in another chunk
Gibbon implicitly adds yet another reserved constructor to each datatype—(Eoc Ptr)—which signals an end
of chunk and stores a pointer to the head of the next chunk. We refer to these pointers as chunk redirection

pointers. When a reader hits an EoC tag, they must use the stored pointer to resume reading.

2.2.3. Indirection and Shortcut pointers. The initial published version of LoCal’s formalism did

not model pointers [65], but extensions (including LoCalP?" [34] described in this dissertation) do, thereby

4Keeping the initial chunk small is optimal in situations where a region contains a small value. But if a region needs to grow

to store a large value, the doubling policy would amortize the overall allocation overhead.

20

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

allowing fields to be initialized out of order and point indirectly into other regions. Such extensions are
realized by two types of pointers: tagged indirection pointers and untagged shortcut pointers.

Sharing via tagged indirection pointers. Tagged indirection pointers enable a program to share a
value among multiple locations. For example, one might write code to construct a binary tree node as
(let x = buildTree n in Node n x x), and expect a single, shared value to be allocated for the left and right
subtrees. But without a way to store the addresses of previously allocated values in the data representation,
the right subtree would have to be allocated by copying the entire left subtree at the appropriate location.
To avoid copying, Gibbon implicitly compiles every datatype d to have an additional reserved constructor
(Ind (Ptr d)), which stores an absolute pointer to a value of type d. Given such additional constructors,
Gibbon can compile the above code to the following: (let x = buildTree n in Node n x (Ind (addrOf x))).
In this version, Gibbon can ensure that the call to buildTree allocates directly in place, in the left subtree
after the Node tag. Thus a pointer is needed only for the right subtree as shown in Figure 2.6a. Similarly, the
identity function (id x = x) becomes (id x = Ind (addrof x)). Indirection pointers are critical to Gibbon’s
ability to compile functions without changing their asymptotic complexity. They provide “opt in” pointers,
with the default case being dense serialization, and the exceptional case being indirection. The runtime
overhead (matching a one byte Ind constructor) is placed on the exceptional case.

Random-access via shortcut pointers. While indirection pointers enable allocation of values out-
of-order, they do not enable reading values out-of-order. To this end, Gibbon uses untagged shortcut
pointers to enable constant-time random-access to certain fields on a per-data-constructor, per-field basis.
The reason shortcut pointers are necessary is that some programs need to “skip over” certain parts of a
value to read it out-of-order, and there is no way to accomplish this if the value is fully serialized—the only
way to access a particular part in it is to scan past all of the data that has been serialized before it. For
example, to compile a program which fetches the rightmost leaf of a binary tree with the correct asymptotic
complexiy (O(log n)), Gibbon stores the absolute address of the right subtree in each intermediate node’
so that it can be accesssed directly without traversing the left subtree, which would make this a O(n)
operation. Figure 2.6 shows such a node.

In principle, shortcut pointers require less space to store than in a normal pointer-based representation,
because no pointer is needed for the leftmost non-scalar field, e.g. one pointer for a binary tree, instead of

two. A possible implementation choice would be to store the integer size in bytes of packed fields which

3Gibbon constructs such nodes using a different constructor, (Node' (Ptr Tree) Int Tree Tree),toindicate the presence

of a shortcut pointer.

21

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

A/\ /\
{N‘4‘ ‘Indh} {N‘o/‘s‘ ‘ }
(a) A binary tree node that uses a tagged indirection (B) A binary tree node that stores an untagged short-
pointer as the right subtree to share the object allo- cut pointer to the right subtree so that it can be ac-
cated for the left subtree. N is short for Node, Ind is a cessed directly. N' is short for Node ', a variant of Node
reserved tag used for indirection pointers. that contains an additional (Ptr Tree) field.

FIGURE 2.6. Data representation with pointers used for sharing (a) and random-access (b).

can be used to skip over them. For example, the address of the right subtree can be computed as the address
of the left subtree plus size of the left subtree, given that all the fields are serialized side-by-side in a single
region. The runtime representation of regions (chunked, growable, as described previously) makes this

choice slightly less efficient in practice unfortunately.

2.2.4. Memory management. In classic region calculi [62, 60], regions can be immediately deallo-
cated at the end of their lexical scope. But, indirection pointers can cause a region to stay alive beyond its
lexical scope, for example, if a pointer to it is captured by another region which is still in scope. Therefore
Gibbon needed an additional reference-counting scheme to free regions that live beyond their lexical scope.
The way this legacy approach worked is, when a region is initialized—with a letregion—its reference count
is set to 1, and it is decremented when the region goes out of scope. At this stage, if its reference count hits
zero, it is deallocated. Correspondingly, regions also maintain an outset that tracks other regions to which
this region points. When a region is freed, the reference counts of all pointed-to regions are decremented
by iterating this outset. Reference counts are stored in per-region metadata, with per-chunk footers linking
to the metadata. Thus the pointer to the chunk footer does double duty for bounds checking and accessing

metadata.

2.3. Limitations of Gibbon

Prior work on Gibbon supports a wide variety of programs in a functionally-correct way, but with sig-
nificant excessive memory retention in some cases, plus a a major skew in its performance landscape—some
programs massively sped up, and others massively slowed down. Specifically, programs which allocate
large structures in order, or which map or fold over such structures, get compiled to use a maximally-

serialized heap, making them significantly more efficient than their pointer-based counterparts. On the

22

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

reverse :: List — List — List
reverse Nil acc = acc

reverse (Xx:Xs) acc = reverse xs (x:acc)

(a) Starting Haskell source code for accumulator-style list-reverse.

reverse :: V I" m® nt. List@!" — List@m® — List@n!
reverse [I” m® nf] xs acc = case xs of
Nil — Ind n' (addrOf acc)
Cons (y:Int@l;") (ys:List@ly") —
letregion u in letloc o01%¥ =start u in
letloc o3% =01" + 9 in
let cpy: List@oy* = Ind o0y* (addrOf acc)
let acc': List@o* = Cons o1 y cpy in

reverse [ly” o1* n']l ys acc'

(B) reverse compiled into LoCal IR by Gibbon.

(ol oIl &) To [4]

(o Tona[§) Ton [ma])

(c) In-memory representation of the linked-list in Figure 2.3c reversed using Figure 2.7b. C is short for Cons and N is

short for Nil.

FIGURE 2.7. Reversing a linked-list.

other hand, programs requiring complicated memory layouts, and small allocations, show various weak-

nesses of the memory management system.

2.3.1. Allocation overheads. Consider the Haskell code for the standard accumulator-style list-
reverse function given in Figure 2.7a. The strict version of this code must build the reversed list from
back-to-front. When compiled to LoCal IR, as in Figure 2.7b, we find a letregion nested inside the Cons
case. Essentially, every output cons cell is allocated in a separate region, linked together using indirection
pointers (Figure 2.7c)—a traditional linked-list! Programs like reverse which allocate small regions at a
very high rate show the overheads of region allocation and collection in Gibbon. In fact, the list-reverse

23

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

program compiled by Gibbon is 4x slower than its pointer-based version. This isn’t surprising because the
Gibbon program performs the same number of region-malloc’s as the pointer-based version does for ob-
jects, but also does additional work to track region metadata information such as the reference counts and
outsets. Note that creating excessive number of Cons cells isn’t the problem here, but rather it’s that reverse
leads to excessive region allocations. That is why mkList when compiled with Gibbon is very efficient but

reverse is not, even though they create the same number of cons cells.

2.3.2. Fragmentation. Another problem that is highlighted in Figure 2.7c is that of fragmentation.
First, reverting to a pointer-based representation means all subsequent traversals of this list would be
slower because of poor data locality and pointer chasing. A little slower than in a traditional pointer-based
heap, because of processing the extra tag-check on each indirection pointer. Second, the space usage is

not efficient, with only one cons cell per region, most space is left unoccupied.

2.3.3. Delayed collection. As we alluded earlier, programs in which objects in a region have signif-
icantly different lifetimes can be memory-inefficient due to the coarsening of reference counts, and thus
can also leak memory: not only leaking the unused space (as in the one-Cons-cell-per-region example),
but because of space used by formerly-reachable objects sharing the region. Consider a program which
repeatedly inserts a random number into a binary search tree (given in Figure 2.8a in the Appendix). Being
a functional tree-insert, it copies the log(N) nodes along the path it updates. The output tree containing
these fresh log(N) nodes must be written to location k;°. This is the only output region, as you can see
there are no letregion expressions in the function body. All the parts of the tree that are not recursed into
and updated, are linked into the output tree via explicit indirection pointers. The additional loop function
is included as an example client that repeatedly updates the tree, inserting or deleting random even num-
bers within the range [0, 512). This artificial client is representative of a common class of programs that
update some structure repeatedly, such as a web-server that maintains a data structure modified by suc-
cessive incoming requests. With Gibbon'’s previous memory management strategy, such programs would
leak memory over time, even though the live data is bounded by a constant in this example. Figure 2.8b
demonstrates how old regions and deleted nodes are kept alive. In this heap, region 7, is still in scope. All
other regions have non-zero reference counts only because of indirection pointers. Only a small subset of
this heap, however, is truly live. All of region r4 is live because it is still in scope. Next, region r4 contains a
pointer to an object in region r3 (highlighted in stippled green), thus keeping it live. Everything else in this

heap is unreachable and should be freed! But the coarsened reference counting collector is unable to free

24

2. BACKGROUND: LOCAL AND THE GIBBON COMPILER

loop :: YV I" k. RNG — Int — Tree@!" — Tree@k®
loop [I" k°] rng i tr = if i == @ then Ind k% (addrOf tr) else
let (n,rng') = next rng @ 512 in
letregion t in letloc jf = start t in
let tr':Tree@j’ = if (n%2)==0 then insert [I" j'1 n tr else delete [I" j!'1 (n-1) tr

in loop rng' (i-1) tr'

insert :: V L7 ki%. Int — Tree@L” — Tree@k;’
insert [l4" ki1 n tr = case tr of

Node (m:Int@ly") (x:Tree@l") (y:Tree@ly”)—
if m < n then
letloc k¥ = k% + 1 in
let x':Tree@k2® = Ind ko® (addrOf x) in
letloc k3® = after Tree@k® in
let y':Tree@ks® = insert [I;” k3®1 n y in
Node ki m x' y'

else ... --Insertinto the left subtree.

—— cases for Leaf and Null

(a) A LoCal program that repeatedly inserts a random number into a binary search tree.

EXtir;ii?j:rt;/jeCt C] Region boundary @ Indirection pointer

(Reachable data)

(B) Heap representation of a long run of program that updates some structure frequently, like the program given in
Figure 2.8a. The objects highlighted in red are unreachable but their collection can be arbitrarily delayed.

FIGURE 2.8. A serialized heap with arbitrarily delayed collection in Gibbon.

any dead space because a pointer from a dead part of region r; keeps region r, alive, thus creating a space
leak—stretching the lifetime of objects to depend on a longer lived, even global, region. A supplemental

collection is required to properly collect such heaps.

25

Reconciling Parallelism and Serialization

The lack of pointers makes running parallel computations over serialized representations challenging.
In this chapter we introduce the necessary extensions to LoCal and the Gibbon compiler to enable par-
allelism. We propose a strategy where form follows function: where data representation retains pointers
only insofar as parallelism is needed, and both data representation and control flow “bottom out” to se-
quential pieces of work that are pointer-free. That is, granularity-control in the data mirrors traditional

granularity-control in parallel task scheduling. In this chapter:

e We introduce the first compiler that combines parallelism with automatic dense data represen-
tations for trees. While dense data [65] and efficient parallelism [67, 48] have been shown to
independently yield large speedups on tree-traversing programs, our system is the first to com-
bine these sources of speedup, yielding the fastest known performance generated by a compiler
for this class of programs.

e We formalize the semantics of a parallel location calculus (Section 3.2) that underpins the compiler,
including a proof of its type-safety (Section 3.2.6). To do so, we extend prior work on location
calculi [65], which in turn builds on work in region calculi [62].

e We evaluate our implementation (Section 3.3) on several benchmarks from the literature (Sec-
tion 3.4.4). On a single thread, our implementation is 1.93%, 2.53X%, and 2.14X faster compared to
MaPLe [67] (an extension of MLton), OCaml, and GHC, respectively. When utilizing 48 threads,
our geomean speedup is 1.92%, 3.73x and 4.01x, meaning that the use of dense representations to
improve sequential processing performance coexists with scalable parallelism. Most notably, the
speedup on a five-pass compiler drawn from a university compiler course was 1.02X, 2.2X and

10.7x over those alternative languages.

26

3. RECONCILING PARALLELISM AND SERIALIZATION

3.1. Parallelism in Location-Calculus

In this section, we outline various latent opportunities for parallelism that exist in LoCal programs

s:“’s

(irrespective of annotation with “||”). The first kind of parallelism is available when programs access the

store in a read-only fashion, such as in an interpreter, for example.
interp : VI . Exp @ I" — Int
interp [I"] t = case t of
Lit (i : Int@ ;") — i
Plus (el : Exp @ ") (e2 : Exp @ /) —

(interp [l,"]1 a) + (interp [}"] b)

Even though the recursive calls in the Plus case can safely evaluate in parallel, there is a subtlety: parallel
evaluation is efficient only if the P1us constructor stores offset information for its right child node. If it does,
then the address of e2 can be calculated in constant time, thereby allowing the calls to proceed immediately
in parallel. If there is no offset information, then the overall tree traversal is necessarily sequential, because
the starting address of e2 can be obtained only after a full traversal of e1. As such, there is a tradeoff between
space and time, that is, the cost of the space to store the offsets, versus the time of the sequential traversal
forced by the absence of offsets.

Programs that write to the store also provide opportunities for parallelism. The most immediate such
opportunity exists when the program performs writes that affect different regions. Such writes can happen
in parallel because different regions cannot overlap in memory. There is another kind of parallelism that
is more challenging to exploit, but is at least as important as the others: intra-region parallelism that can
be realized by allowing different fields of the same constructor to be filled in parallel. This is crucial in
LoCal programs, where large, serialized data (large trees or DAGs) frequently occupy only a small number
of regions, and yet there are opportunities to exploit parallelism in their construction.

Consider the case in Figure 2.1b which recursively calls constFold on the sub-expressions of Plus. If
we want to access the parallelism between the recursive calls, we need to break the data dependency
that the right branch has on the left. The starting address of the right branch, namely [,"2, is assigned to
be end witness of the left branch by the after expression. But the end witness of the left branch is, in
general, known only after the left branch is completely filled, which would effectively sequentialize the

computation. One non-starter would be to ask the programmer to specify the size of the left branch up

27

3. RECONCILING PARALLELISM AND SERIALIZATION

front, which would make it possible to calculate the starting address of the right branch. Unfortunately,
this approach would introduce safety issues, such as incorrect size information, of exactly the kind that
LoCal is designed to prevent. Instead, we explore an approach that is safe-by-construction and efficient,

as we explain next.

3.2. Region-Parallel LoCal

To address the challenges of parallel evaluation—in concert with dense, mostly-serialized data repre-
sentations —we start by presenting an execution model, LoCal?®, which can utilize all potential parallelism
in LoCal programs. Parallelism in this formal model is generated implicitly, by allowing every let-bound
expression to potentially evaluate in parallel with the body. Accordingly, the language omits explicit par-
allelism “hints” (||). That is, you’ll see in the next sections that implicitly parallel let has both a sequential
and parallel evaluation rule. By modeling every possible parallelization, the formal model is general — it
formalizes all possible valid parallel schedules, and all valid heap layouts. We return to the pragmatic issue

of selecting efficient parallelizations, i.e. granularity control, in Section 3.3.1.

3.2.1. Region memory and parallel tasks. In the formal model, while parallelism is implicit, there
is still a restriction that at most one task allocates in a given region at a time. To realize intra-region
parallelism, the model introduces fresh, intermediate regions as needed, that is, when the schedule takes
a parallel evaluation step for a given let-bound expression, and the body tries to allocate in the same
region. To demonstrate this, let us consider a trace of the region-parallel evaluation of the program from
Figure 2.1b, corresponding to the schedule shown in Figure 3.1, where the recursive calls to constFold on
lines 12 and 14 run in parallel with each other. The parallel fork point for the first recursive call occurs on
the 11" step of the trace. At this point, the evaluation of the let-bound expression results in the creation
of a new child task, and the continuation of the body of the let expression in the parent task.

Each task has its own private view of memory, which is realized by giving the child and parent task
copies of the store S and location map M. These copies differ in one way: each sees a different mapping for
the starting location of e3, namely I3"2. The child task sees the mapping I3"? + (rs, 1), which is the ultimate
starting address of e3 in the heap. The parent task sees a different mapping for I3"2, namely (r,, ivar e3).
This address is an ivar: it behaves exactly like an I-Var [7], and, in our example, stands in for the completion
of the memory being filled for e3, by the child task. Any expression in the body of the let expression that

tries to read from this location blocks on the completion of the child task.

28

3. RECONCILING PARALLELISM AND SERIALIZATION

DS = {r, - (0P, 11,2120, 0 E
3wP,4-L,5-10,6-L,7-12}, -
- AP
ry — o}

M = {l; = (r,00,15 = (r,00}

DM ={..., .90 (ry,)10 = <ry,3)}
M={..., 59,1}

L V@M ={..., 15% (r,,ivar e3)}

Mtz
®M =1{..., 1,0 5, &(r;0))} ®
S ={..., |’3?—>®} ‘;P

»

- AP,
@ constFold [(ry,3),r;,&(rs;,0))] o ’ ‘ L ‘20‘ ‘
M = {oo, Il <m0 Lot o <ry, 60} - AP M- AP,
S ={..., 13 > {OnL, 1522} © |L]20] L [22]
OM=1{.., 10,1} "o AP N AP,
S ={.., r;m{.., Om P, 35&(r;,0)}} N
OS = ..., r{0-P, 101,220, o|P|L |20 é] L [22]
30L,4022} " ap ap,
(a) (8)

FIGURE 3.1. (a) Parallel, step-by-step execution of the program from Figure 2.1b such that
parallel allocations happen only in separate regions, and (b) the heap operations corre-
sponding to the output region r,. Each step is named after its line number in the program
and only shows the changes relative to the previous step. P is short for Plus, and L is short

for Lit.

The only exception to this blocking-rule is a letloc after expression, which is handled differently.
Such an expression occurs at line 12, just after the parent continues after the fork point. At this step, the
parent task uses an after expression to assign an appropriate location for the starting address of e4, one
past every byte occupied by e3. If we synchronize with the child task here, the computation will effectively
be sequential. In order to avoid that, the starting address of e4 is assigned to be I;"2 + (ry, &(r3,0)). This
address is an indirection pointing to the start of fresh region r;, and causes the parent task to allocate e4
in the region r; instead of r,, which is being allocated to by the child task, thus maintaining the single-
threaded-per-region allocation invariant. The parent and child tasks have, in effect, two different allocation
pointers for what will functionally be the same region (after joining). The use of e3 on line 15 forces the
parent task to join with its child task. In particular, {r,, ivar e3) is substituted by (r;, 1), the starting

29

3. RECONCILING PARALLELISM AND SERIALIZATION

address of e3, in the expression and the location map M. Also, all the new entries in the location map M
and store S of the child are merged into the corresponding environments in the parent. Finally, the regions
rp and rs are linked with a pointer, corresponding to the indirection pointer that was added for the starting

address of e4.

3.2.2. Syntax and operational semantics. In this section, we present the formal semantics of our
parallel location calculus, LoCalP*". This semantics has also been mechanically tested in PLT Redex [24].
The grammar for the language is given in Figure 3.2. Again, all parallelism in this model language is
introduced implicitly, by evaluating let expressions. There is no explicit syntax for introducing parallelism
in our language, and consequently the language is, from the perspective of a client, exactly the same as
the sequential language [65].

The parallel operational semantics does, however, differ from the sequential semantics, most notably
from the introduction of a richer form of indexing in regions. Whereas in sequential LoCal a region index
consists simply of a non-negative integer, it is enriched to an extended region index ic in LoCalP*". It
consists of either a concrete index i, an ivar x, or an indirection pointer &(r,). A concrete index is a
non-negative integer that specifies the final position of a value in a region. An ivar is a synchronization
variable that is used to coordinate between parallel tasks. For example, the ivar e3 in the sample trace
in Figure 3.1, is used to synchronize with the child task that is allocating e3. An indirection &(r, i) points
to the address i in the region r, and is used to link together different chunks of the same logical region,
which may have been introduced to enable intra-region parallel allocation. For example, in the sample
trace in Figure 3.1, a pointer &(r3, 0) written at the end of the value e3 links it with the value e4, which is
allocated to a separate region r;. And a concrete location cl is enriched to a pair (r, i), of a region r, and an
extended region index i¢. The state configurations of LoCalP®" appear in Figure 3.3. Just like in sequential
LoCal, a sequential state of LoCalP®, ¢, contains a store S, location map M, and an expression e. But by
using enriched concrete locations, the location map also has the ability to contain indirection pointers. A
value that can be written to a heap, hv, is similarly enriched to allow indirection pointers.

Figures 3.5 and 3.6 show the complete dynamic semantics of LoCal?®'. The driver which runs a LoCalP*"
program initially loads all data types, functions, type checks them, and if successful, then seeds the Func —
tion, TypeOfCon, and TypeOfField environments. Let ey be the main expression. If ey type checks with
respect to the T-Program rule (given in Figure B.3), then the main program is safe to run. The initial

configuration for the machine is a single task, (7, (r,0),0;{! — (r,0) };), and the program can start

30

3. RECONCILING PARALLELISM AND SERIALIZATION

K € Data Constructors, 7, € Type Constructors,
x,y, f € Variables, [I" € Symbolic Locations,

r € Regions, i,j € Concrete Region Indices,

Top-Level Programs top == Ei\ ;ﬁ ;e

Datatype Declarations dd :=datar.=K 7
Function Declarations fd =fits;fx=e

Located Types T u=1@l

Types T u=7g
Type Scheme ts u= VF.? -7
Extended Region Indices io,jo == i|ivar x | &(r, i)
Concrete Locations o u=(r, oy
Values v u=x|cl
Expressions e u=v
NGk
|KI' v
|letx:7=eine
| letloc"=leine
| letregionrine
| case v of ﬁ
Pattern pat ==K (x—%) — e
Location Expressions le :=startr
| ' +1
| after 7

FIGURE 3.2. Grammar of LoCalP?',

31

3. RECONCILING PARALLELISM AND SERIALIZATION

Store S u={r+hy, ..., rm—> hy}
Heap Values hv ==K | &(r, i)
Heap h uw={ig+ hvy, ... ,in > hvy}
LocationMap M == {l'wrcl, ..., ["—cl,}
Sequential States t =S Me
Parallel Tasks T == (7, clt)

TaskSet T «={T,...,T,}

Ficure 3.3. Extended grammar of LoCalP®" for dynamic semantics.

TypingEnv. I' == {xy =17, ... ,xp > T}

Store Typing X == {['+1, ["—>1,}
Constraint Env. C == {[' > ley, ..., I > ley }
Allocation Pointers A =A{r—apy, ... ,rn—ap,}

whereap=1"| 0
Nursery N == {[', ...}

Typing Env. Map w= {cy—> Iy, ...,y T,}
Store Typing Map w={ch > X, ..o,y X}
Constraint Env. Map C = {cy > Cy, ... ,cly—> Cy}
Allocation Pointers Map A == {ci — Ay, ... ,cly— Ay}
Nursery Map N u= {clj—> Ny, ... ,cly—> Ny}

FIGURE 3.4. Extended grammar of LoCalP® for static semantics.

taking evaluation steps from this initial configuration. This configuration can be constructed automatically
in a straightforward way:.

3.2.2.1. Sequential transitions. A subset of the sequential transition rules are given in Figure 3.5.
The rules are close to the original sequential rules, except for some minor differences. For the rule D-

DataConstructor, we need to handle the case where an indirection is assigned to the source symbolic

32

3. RECONCILING PARALLELISM AND SERIALIZATION

[D-DATACONSTRUCTOR]

N

SM;KI" v = 8, M;{r', i)
where S =SU{r — (i > K)}; (., i) = M(I")

[D-LeTLOC-TAG]
S;M;letlocI"=1I'"+1ine= S;M’;e
where M =MU{I' = (r,i+1)}; (I'" = {(r,i))eM

[D-LETLOC-AFTER]
S;M;letloc I”' = after t@l)" ine= S;M';e
where (r,i) = M(I)"); ;(r, i}; S Few (.))

M =MU{l'—={(r,j)}

[D-LETLOC-AFTER-NEWREG]
S;M;letloc I" = after t@l," ine= S"; M’;e
where (r,ivar x)% = M(l,"); r’ fresh
S=SuU{r=0s M=MU{l" (r,&(,0))}
[D-CasE]
S;M;case (r,)" of [...K (x:1@I") = e.]= S;M;¢
where ¢ = e[{(r, W)F/Tc\]

M =MU{T (ri+1),..,

l]r"+1 = <rs Wj+1>}
a,<r,l+1>,SFew (F,V—VD
Tj_+I;<r:"7]\'>;S"ew (r,Wj+1>
K=8(r)(i); je{1,..,n—1}; n=|x: 7|
[D-LET-EXPR]
S;M;e; = S's M5 e e+

SsM;letx:7=e in e :>S';M';letx:f:ei in e

[D-LET-VAL]

S;M;letx : T=v; in es = S; M; ex[v1/x]

FIGURE 3.5. Dynamic semantics rules (sequential transitions).

33

3. RECONCILING PARALLELISM AND SERIALIZATION

location [”. For this purpose, we use a metafunction M (formally defined in Section 3.2.4) that can deref-
erence indirection pointers when looking up its address in the location map M. With respect to the rule
D-LetLoc-After-NewReg, we now allow the concrete location assigned to the source location [," to hold
an ivar. The purpose of this relaxation is to allow an expression downstream from a parallelized let bind-
ing to continue evaluating in parallel with the task that is evaluating the let-bound expression. The task
evaluating the after expression continues by using an indirection pointing to the start of a fresh region r’.
The effect is to make (r’, 0) the setting for the allocation pointer for the task. If the source location [" is
assigned to hold a concrete index i, the rule D-LetLoc-After yields an address by using the the end-witness
judgment.

3.2.2.2. Parallel transitions. We generalize a sequential state to a parallel task T by adding two
more fields: a located type and a concrete location, which together describe the type and location of the
final result allocated by the task. A parallel transition in LoCalP?" takes the form of the following rule,

where any number of tasks in a task set T may step together.
T=,,T

In each step, a given task may make a sequential transition, it may fork a new parallel task, it may join
with another parallel task, or it may remain unchanged.

The parallel transition rules are given in Figure 3.6. In these rules, we model parallelism by an inter-
leaving semantics. Any of the tasks that are ready to take a sequential step may make a transition in rule
D-Par-Step. A parallel task can be spawned by the D-Par-Let rule, from which an in-flight let expression
breaks into two tasks. The child task handles the evaluation of the let-bound expression e;, and the parent
task handles the body e,. To represent the future location of the let-bound expression, and to create a data
dependency on it, the rule creates a fresh ivar, which is passed to the body of the let expression. This same
ivar is also the target concrete location of the child task, thereby indicating that it produces this value.

A task can satisfy a data dependency in a rule such as D-Par-Case-Join, where a case expression is
blocked on the value located at ivar x., by joining with the task producing the value. Because each
task has a private copy of the store and location map, the process of joining two tasks involves merging
environments. The merging of the task memories is performed by the metafunctions MergeS and MergeM,
defined formally in Section 3.2.4. We merge two stores by merging the heaps of all the regions that are
shared in common by the two stores, and then by combining with all regions that are not shared. We merge

two heaps by taking the set of all the heap values at indices that are equal, and all the heap values at indices

34

3. RECONCILING PARALLELISM AND SERIALIZATION

[D-PAR-STEP]
S;M;e= S';M'; ¢

Ty, ... (7, cl, S;Mse), .. Ty, =y Th, ., (T, S5 M5 €), . Ty

[D-PAR-LET-FORK]
Ty, ..., (T, cLS; Mse), ... T, =, Th, ..., (71, cli, S; M; 1), ... Ty, (7, cl, S; My; €3)
where e=(letx:7 = e ine); 71 = 1@L"

x1 fresh; ¢l = (r, ivar x1); €, = ex[cly/x]

M:{llrl HCll}UM,; Mzz{llrli—)cl;}UM,

[D-PAR-CASE-JOIN]
Ty Ty oo, Ty =pp Ty, o, T, . Ty,
where
T, = (7, cle, Sc; Me; e.); e. = case (r,ivar xc)lc of ﬁ
Ty € {T,... Tu} = (p@L,", (r, ivar xc), Sp; Mp; (1, ip))
Mz = MergeM(M,, M.); S3 = MergeS(Sp, Sc)

e, = case (r, ip>lP of ﬁ‘[ip/ivar x]; T, = (%, cle, S3; Ms; €))

[D-PAR-DATACONSTRUCTOR-JOIN]
Ty, ... (T, S;Mse), ... Ty =p T1, ., T, Ty,
where e=K I' v; (r,ivar x;) = vj; T, € { Ty,..., Tn }
T, = (z.@L", {r, ivar x;), Se; Me; (1, ic)*)
M’ = MergeM(M,, M); S" = MergeS(S, S)
n= |T;|; V’ = [Via cesy vj——;r <r5 iC>lC9 v]TI} eeey Vn\]
7j = TypeOfField(K, j);
S" = LinkFields(S', M, 7j, (r, i)y if j#n else S

N

e€=KI'V; T =(7,c,S";M;¢)

F1GURE 3.6. Dynamic semantics rules (parallel transitions).

in only the first and only the second heap. The merging of location maps follows a similar pattern, but is
slightly complicated by its handling of locations that map to ivars. In particular, for any location where one

of the two location maps holds an ivar and the other one holds a concrete index, we assign to the resulting

35

3. RECONCILING PARALLELISM AND SERIALIZATION

location map the concrete index, because the concrete index contains the more recent information. After
merging the environments, all occurrences of ivar x, are eliminated in the continuation, and are replaced
by the index i,, that represents the starting index of the value produced by the task T,. Join points in
LoCalP® are, in general, deterministic, because they only increase the information held by the parent task.

The rule D-Par-DataConstructor-Join handles the case where a data constructor is blocked on the value
of its j** field, and it joins with the task producing that value. It is similar to D-Par-Case-Join, and also
requires merging environments. But depending on the schedule of execution, if the (j + 1)*" field of this
constructor was computed in parallel with the j** field, they will both be allocated to separate regions,
due to the way the rule D-LetLoc-After-NewReg works. These fields have to be reconciled to simulate
a single region. For this purpose, we use a metafunction LinkFields —defined formally in Section 3.2.4—
which stitches together these fields by writing an indirection pointing to the start of the region containing
the (j +1)*" field at an address one past the end of the j** field. Thus, when all fields of a data constructor
are synchronized with, all fields allocated to different regions are linked together by indirection pointers,

forming a linked-list.

3.2.3. Type system. Our type system for LoCalP* requires some substantial extensions to the orig-
inal type system given by [65]. These extensions address the need to handle multi-task configurations,
which require a number of new typing environments and rules. Before we present these extensions, we
recall the typing rule for the configuration of a single task, which is mostly unchanged from the original.

I CANEEA N ;e 7

The context for this judgement includes five different environments. First, I" is a standard typing environ-
ment. Second, X is a store-typing environment, mapping materialized symbolic locations to their types.
That is, every location in X has been written and contains a value of type X(I"). Third, C is a constraint
environment, keeping track of how symbolic locations relate to each other. Fourth, A maps each region in
scope to a location, and is used to symbolically track the allocation and incremental construction of data
structures; Finally, N is a nursery of all symbolic locations that have been allocated, but not yet written
to. Both A and N are threaded through the typing rules, also occurring in the output of the judgement, to
the right of the turnstile.

Let us first consider the rule T-DATACONSTRUCTOR given in Figure 3.7. It starts by ensuring that the
tag being written, and all the fields have the correct type. Along with that, the locations of all the fields of

the constructor must also match the expected constraints. That is, the location of the first field should be

36

3. RECONCILING PARALLELISM AND SERIALIZATION

[T-DATACONSTRUCTOR]
TypeOfCon(K) =t TypeOfField(K, i) = ;17
FeN A=l ifn#0 elsel
CY=I+1 C(h') = after (@1
IS GANE AN @l

[CANEFAN KT v @l
where A’ =AU{r>1I"}; N=N-{I"}
n=|v];iel={1...,n};jel—-{n}

FIGURE 3.7. A copy of the typing rule for LoCal data constructor given in [65].

[T-DATACONSTRUCTOR-IVARS]

—

TypeOfCon(K) =t TypeOfField(K, i) = 1]
I"'eN A(r)=? ifn#0 elsel
C(Y=I+1 C(h') = after (@1
Fperrivarxg) = 5 CGANF AN Y 1@l

5 CGANFAN KT Vv @l

where n=|v|;iel={1,...,n};jel-{n}

Ficure 3.8. Additional typing rule for type checking an in-flight data constructor.

[T-Task]
IS GANEA N e 7 [T-TASKSET-EMPTY]
I';2,C, AN Fraske A,;N/;(’l:, cl, S; M; e) 5 3G AN Fggkser AN O

[T-TASKSET]

(G, S;M;e)=T; I'= () X= () C=C(c) A=A(c) N=N(c)

[5G AN brask ANGTi i A'=AU{cl»> A} N =NU{c— N}
i SCALN Fgskser AN { T, L, T)

3 3G AN Fgkser AN AT, Ty, Ty)

Ficure 3.9. Typing rules for a parallel task T, and a set of parallel tasks T.

37

3. RECONCILING PARALLELISM AND SERIALIZATION

immediately after the constructor tag, and there should be appropriate after constraints for other fields in
the location constraint environment. To indicate that the tag has been written, the allocation environment
is extended and the location [is removed from the nursery to prevent multiple writes to a location. If
any fields of the constructor have evaluated to an ivar, however, the tag is not written to the store (D-
Par-DataConstructor-Join). The rule T-DATACONSTRUCTOR-IVARs handles this case. It does not extend the
allocation environment, and also keeps the location [in the nursery, so that a constructor tag may be
written at this location in the future, once this task has synchronized with those allocating the fields. This
additional typing rule is necessary to satisfy a requirement of the Top Level Preservation lemma (B.2.4).
To generalize our typing rules to handle multi-task configurations, we introduce new environments
for variables , store typing , allocation constraints C, allocation pointers A, and nurseries N. These
environments—given in Figure 3.4—extend their counterparts in the sequential LoCal type system, and are
needed to track state on a per-task basis. The precise typing rules to type check a parallel task T, and a
set of parallel tasks T are given in the Figure 3.9. A parallel task T is well-typed if its target expression
e is well-typed, using the original LoCal typing rules, and a task set T is well-typed if all tasks in it are

well-typed.

3.2.4. Definitions of metafunctions. In the following, we define various metafunctions used in the
formalism.

3.2.4.1. Merging task memories. These metafunctions are given in Figure 3.10. We merge two
stores by merging the heaps of all the regions that are shared in common by the two stores, and then by
combining with all regions that are not shared. We merge two heaps by taking the set of the all the heap
values at indices that are equal, and all the heap values at indices in only the first and only the second
heap. The merging of location maps follows a similar pattern, but is slightly complicated by its handling
of locations that map to ivars. In particular, for any location where one of the two location maps holds an
ivar and the other one holds a concrete index, we assign to the resulting location map the concrete index,
because the concrete index contains the more recent information.

3.2.4.2. End-Witness judgement. The end-witness rule is given in Figure 3.11. This rule provides a
naive computational interpretation of the process for finding the index one past the end of a given concrete
location, with its given type. It is mostly the same as the one given for the original, sequential LoCal, but

includes an additional case for handling indirection pointers. To compute the end-witness of an indirection

38

3. RECONCILING PARALLELISM AND SERIALIZATION

MergeS(Sy, S) {r— MergeH(hy,hy) | (r—> hy) € S, (r—> hy) € S, }
{r>h|(r— h) € S,r¢dom(S,)}

{r>h|(r> h) €S, ré¢dom(S)}

c C

MergeH(hl, hz) = {ll = th (ll = hV) € hy, (lg = hV) € hy, iy = 12}
(i hv| (i hv) € hyi¢ {77 € dom(hy)}}
(i hv| (i hv) € hy i ¢ { |7 € dom(hy)}}

C

C

MergeM(Mi, Mz) = {I'—=>(r,it) [("= (r,iy)) € My, (I" > (r,i2)) € Mp,in = iz }
{I'>c| ("> cl)e M,I" ¢ My}

{I'>c|l"gM,(I"—> cl) e My}

{I'=>(rj) | (= (rivar x)) € My, (I" = (r,j)) € Mz }
(> (i) | (M= (rj)) e My, (I" = (rivar x)) € My }

c C C C

FIGURE 3.10. Metafunctions for merging task memories.

Case (A). 75, is); S Few (I, Ie):
(1) S(r)(is) = K’ such that

datare=Ki 71 | ... | K7 | ... | K Tm

(2) wo =is+1
(3) 743 (r Wo): S Few (1WA
7o (R)5S by (r W)
whereje{1,...,n—1}hn= |?|
(4) ic = Wn
Case (B). 75 (1, is); S Few (7', 1,):
(1) S(r)(is) = &(r', i)

(2) Tcs <r/; i;>§ S Few <r,: ié)
FIGURE 3.11. The end-witness rule.

pointer, the judgement first reads the address (r’, i;) which is written at (r, is), and returns the end-witness

of the value allocated at (r’, if).

39

3. RECONCILING PARALLELISM AND SERIALIZATION

3.2.4.3. Linking fields of a data constructor. Given a store S, a location map M, and the addresses
of the n'" and (n + 1)*" fields of a data constructor K, this metafunction conditionally establishes a link
between these fields. If the location map M maps the symbolic location of the (n + 1) field, L,", to an
indirection pointer &(ry, iz), it means that these fields were computed in parallel with each other, and thus
would have been allocated into separate regions. To link such fields, we use the end-witness judgement
to compute an address (ry, i,) which is one past the end of the n" field, and we then write an indirection
pointer pointing to the starting address of the (n + 1) field at (ry, i,). This establishes the desired link.
If the fields have been allocated into the same region, we do not have to link them, and the store S is
returned unchanged in this case. A precondition for using this metafunction is that the n*" field must be
fully allocated. The layout of the heap corresponding to different schedules after establishing links between
the fields is shown in Figure 3.14.

LinkFields(S, M, 1, {1, i), cI?) = SU{r, — (i — &(r2 i2)) }

where (L" > (1, &(r, 1)) € M and 71;(ry, i1); S Few (11, Ie)

LinkFields(S, M, 71, (ry, i)", cI?) = S
where (L™ (r, &(r2, 1)) ¢ M

FIGURE 3.12. Metafunction for linking fields of a data constructor.

3.2.4.4. Derefrencing indirections in M. If a location [maps to an indirection pointer &(7’, i) in
M, it is derefrenced by returning the address (r’, i). Otherwise, the mapping contained in M is returned

unchanged.

(I cl) e M(I)
(r,jo)y = Deref (M, cl)

M(l) = (r,jo) where

Deref (M, (r, &(r’, i))) = (', i)
Deref (M, (r, i)) = {(r, i)
Deref (M, (r,ivar x)) = (r,ivar x)

FIGURE 3.13. Derefrencing indirections in M.

40

3. RECONCILING PARALLELISM AND SERIALIZATION

3.2.4.5. Other global environments and metafunctions.

Function(f): An environment that maps a function f to its definition fd.

Freshen(fd): A metafunction that freshens all bound variables in function definition fd and re-
turns the resulting function definition.

TypeOfCon(K) : An environment that maps a data constructor to its type.

TypeOfField(K, i): A metafunction that returns the type of the i’th field of data constructor K.
ArgTysOfConstructor(K): An environment that maps a data constructor to its field types.
Maxldx(r,S) =max({ -1} U {j| (r— (j— K)) € S}): A metafunction that returns the highest
allocated address in the store, or -1 if nothing has been allocated yet.

IsVal(e): A metafunction that checks if an expression is a value or not.

Ivars(e): A metafunction that yields the set of ivars that occur in the term e.
HasSingleWriter (T, 7, ivar x) = [{ (7, (r, ivar x)}, S; M;e) |

s me- (7 (r ivar x), S;M;e) € T} =1

A metafunction that checks if there is exactly one task T € T which can supply a value of type 7
for ivar x.

GetSingleWriter(T, 7,ivar x): A metafunction that returns a unique task T € T which can
supply a value of type 7 for ivar x if it exists, or returns -1 otherwise.

TaskComplete((7, cl, S; M; e)) = IsVal(e): A metafunction that checks whether a task has evalu-
ated to a value.

deepSupersetEqS(1, 2) = 12 2V({(cdd—>) e o= (> X)) e 1A 2 %) A
metafunction that checks if the first argument is a deep superset of the second. In other words,
the first argument can contain a mapping (¢l — X) which is not present in the second one and
thus be a super set at the outer level. Or a specific mapping within the first argument can be a
super set of the corresponding mapping within the second, and be a super set at an inner level.
Note that it uses an inclusive-or, and both these conditions may be simultaneously true.
deepSupersetEqC(C4, Cy): A metafunction identical to deepSupersetEqS, but for C.

a®b=(aA-b)V (—aAb): Ametafunction for the exclusive-or logical operator.

3.2.5. Well-formedness Judgments. In this section we present certain well-formedness criteria for

various elements of the formal model. Some of these are similar to the corresponding judgments for se-

quential LoCal given in [65], but they are extended to handle ivars, and indirections in the location map

41

3. RECONCILING PARALLELISM AND SERIALIZATION

and store. We give an additional judgement to check the well-formedness of the set of tasks executing
in a parallel machine. Because there are many requirements specified inside the various well-formedness
judgments, we introduce notation for referring to requirements individually. For example, the notation
WF 3.2.5.4;2 refers to the judgement A; N +,,r M;S, specified in Section 3.2.5.4, and in that judgement,
rule number 2.

3.2.5.1. Well-formedness of a task set.

Judgement form. ;C;A;N by 0T

The following well-formedness rule applies to a set of tasks executing in the parallel machine. This
judgment specifies two new invariants that must hold for all tasks T € T. The first enforces that all ivars
get filled with an appropriate value. In particular, if an expression being evaluated by a task references
an ivar, then there must be exactly one other task in the task set which supplies a well-typed value for it.
Rule 1 specifies that for all ivars referenced in an expression being computed by a certain task, there is a
corresponding ivar in the location map, and there is exactly one other task in the task set which supplies a
well-typed value for that ivar. The second invariant consists of the well-formedness judgment that verifies
certain properties hold for each store of a given task. Rule 2 references a separate judgement for well-
formedness of the store with respect to the location map of a parallel task. This judgment generalizes a
similar rule used in the original proof by its use of the overall task set T.

Definition.

V(7 cl,S;M;e) €T.

Y= (cl); C=C(cl); A=A(cl); N=N(cl)

(1) {r,ivar x)l € Ivars(e) AD; X; C; A;N + A; N'; (r,ivar x)l N
(I' — (r,ivar x)!) € M A HasSingleWriter(T, 7, ivar x)
(2) Z;C;A;N; T Fwf M; S

3.2.5.2. Well-formedness of a store.

Judgement form. X; C; A;N; T v p M; S

The well-formedness judgement for a parallel task’s store extends the judgment of the sequential Lo-
Cal typing system to establish a global criterion for well-formedness, checking in particular that parts of
regions that are distributed across each task-private store, given by M; S, are well-formed. This judgement
is one of the most challenging parts of our extension, because it must be strong enough to ensure safe
merging of stores when tasks meet at join points. Like in sequential LoCal, it specifies three categories of
invariants.

42

3. RECONCILING PARALLELISM AND SERIALIZATION

The first category enforces that allocations occurring across the task-private stores are accounted for.
In particular, for each symbolic location in the store-typing environment, (I" — 7) € X, a value must be
allocated to the appropriate store. There are two possible ways in which this allocation may occur: (1)
sequentially, in the current task, or (2) in parallel, in a different task. In the sequential case, ["’s address
in the location map M must be a concrete index, and it must have an end-witness. This technical point
ensures that the store never contains partially allocated values. In the parallel case, I"’s address in M must
be an ivar, and there must be exactly one other task, T,;;, € T, that supplies a well-typed value for it.
Moreover, ["’s address in Ty, s location map must be a concrete index, and if Ty, has finished evaluating,
this value must have an end-witness. This property ensures that when these tasks merge, the resulting
store has complete values allocated at the expected addresses and the expected types.

The second category enforces that allocations occur in the sequence specified by the constraint envi-
ronment C. Rules 2 and 3 reference the judgments for well-formedness concerning in-flight constructor
applications (Section 3.2.5.3) and correct allocation in regions (Section 3.2.5.4), respectively. In particular,
if there is some location / in the domain of C, then the location map and store must have the expected
allocations at the expected types. The most interesting rule here is that for the after constraint, since
it involves potential parallel allocations. For instance, if (I +— (after t@!’)) € C, then the values at
locations [and I’ may be allocated sequentially, in the same task, or in parallel, in different tasks. The
sequential case is straightforward. For the parallel case, there are two possibilities — (1) the task allocating
the value at location I’ may be still in-flight, or (2) it may have already synchronized with the current
(parent) task. In the first case, we ensure the presence of an appropriate indirection in the location map
(I — (r, &(rfesh, 0))) and of a fresh region in the store (7esh € S). Otherwise, we ensure that a link between
the values at locations I’ and [exists, which is accomplished by the metafunction LinkFields.

The final category enforces that each location is written to only once. This is done by checking that
the nursery and store-typing environments reference no common locations (dom(X) N N = 0), which is
a way of reflecting that each location is either in the process of being constructed and in the nursery, or
allocated and in the store-typing environment, but never both.

Definition.

N I'>neX=
((r i) = M(I) AT (rin)s S Few (1 12)) @
((r,ivar x) = M(I") A
Ao pr.e. (7, {r,ivar x),5'; M’; ') = GetSingleWriter(T, 7, ivar x) A

43

3. RECONCILING PARALLELISM AND SERIALIZATION
(rity = M/(I") A
(IsVal(€') = 1;(r,i1); S Few (1, 12)))
(2) Crufype M5S
(3) A;N kype M;S
(4) dom(X)NN =0
3.2.5.3. Well-formedness of constructor application.
Judgement form. C +,,. e M5 S
The well-formedness judgement for constructor application specifies the various constraints that are
necessary for ensuring correct formation of constructors, dealing with constructor application being an
incremental process that spans multiple LoCalP*" instructions. Rule 1 specifies that, if a location corre-
sponding to the first address in a region is in the constraint environment, then there is a corresponding
entry for that location in the location map. Rule 2 specifies that, if a location corresponding to the address
one past a constructor tag is in the constraint environment, then there are corresponding locations for the
address of the tag and the address after it in the location map. Rule 3 specifies that, if a location correspond-
ing to the address one past after a fully allocated constructor application is in the constraint environment,
then there are corresponding locations for the address of the start of that constructor application, and for
the address one past the constructor application in the location map. There are two possible ways in which
the values at locations I’ and I" may be allocated — (1) sequentially, by a single task, and thus in a single
region, or (2) in parallel with each other, by separate tasks, and thus in separate regions. The first disjunct
holds when the values are allocated sequentially by a single task. In this case, the starting address of the
constructor application is a concrete index, and an end-witness for it also exists. The address one past the
constructor application is this end-witness. The second disjunct holds when the values are allocated in
parallel by separate tasks. In this case, the location map M and store S belong to the task that allocates
the value at location [". The starting address of the constructor application is an ivar, and the address one
past the constructor application is an indirection pointer pointing to a separate region which has been
allocated in the store. The third disjunct holds when the values are allocated in parallel by separate tasks,
but after those tasks have synchronized with each other, and their memories merged (3.2.4.1). The merge
resets the starting address of the constructor application back to a concrete index, and an end-witness for
it now exists. The store contains an indirection pointer at this end-witness which points to the start of the

region that contains the value at location [". In other words, a link between the values at locations I’ and

44

3. RECONCILING PARALLELISM AND SERIALIZATION

I" exists. The address one past the constructor application is the corresponding indirection pointer. Note
that these disjuncts are connected with an exclusive-or, and only one of them can hold at a time.
Definition.
(1) I'>startr)eC= ("> {(r,0)) eM
@) ' (I''+1) e C=(ri)=MTI")A{ri+1) =M
3) (I' > afterr@!'"") e C=>
((riry = M) AT3(r in)s S Few (1 i) A dp) = M(I)) @
({r,ivar x1) = M(I') A (I' = (r,&(r3,0))) e MA{r, > h} €S &
(rin) = M) AT (r i) S Few (ryi2) A (I 5 (1, &(12,0))) € M A S(r) (i) = &(12,0))
3.2.5.4. Well-formedness concerning allocation.
Judgement form. A; N Fuwfoa M5 S
The well-formedness judgement for safe allocation specifies the various properties of the location map
and store that enable continued safe allocation, avoiding in particular overwriting cells, which could, if
possible, invalidate overall type-safety. Rule 1 requires that, if a location [is in both the allocation and
nursery environments, i.e., that address represents an in-flight constructor application, then there is a
corresponding location in the location map and the address of that location is the highest address in the
store. Alternatively, the value at location I” is allocated in parallel by a separate task, in a separate region,
and its address is the corresponding indirection pointer. Rule 2 requires that, if there is an address in the
allocation environment and that address is fully allocated, then the address of that location is the highest
address in the store. Rule 3 requires that, if there is an address in the nursery, then there is a corresponding
location in the location map, but nothing at the corresponding address in the store. Finally, Rule 4 requires
that, if there is a region that has been created but for which nothing has yet been allocated, then there can
be no addresses for that region in the store.
Definition.
(1) (r=I"YeAAI"eN) =
(' > {r,iy) e MAi> MaxIdx(r,S)) & (I" > &(rp, ip)) € M
@) (r> 1) e AN (i) = M) A" € N A 131, i5): S Feyy (1, ie)) = i > MaxIdx(r, S)
B)reN=(rniy=MI"A(r— (i K)) ¢S
4) (r=0)cA=(r—0)esS

45

3. RECONCILING PARALLELISM AND SERIALIZATION

3.2.6. Type safety. Compared to the original type-safety result proved for single-task LoCal, ours
generalizes to parallel evaluation by requiring that, for any given multi-task configuration, either the pro-
gram has fully evaluated or at least one task can take a step. As usual, we prove this theorem by showing
progress and preservation. The main complication relates to the property that parts of the overall store
are now spread across the individual stores of the tasks, whereas in the original proof there is only one
store. In particular, our proof must establish that the store of each task remains well formed, even while
that task waits on a data dependency, and moreover after the task joins with another task and their stores
are merged. The complete proof is available in Appendix B.2.

With the well-formedness and typing judgments in hand, we can now state the type-safety theorem,
shown below. This theorem states that, if a given task set T is well typed and its overall store is well formed,
and if T makes a transition to some task set T’ in n steps, then either all tasks in T’ are fully evaluated or

T’ can take a step to some task set T”.

THEOREM 3.2.1 (Type Safety).
If 0, ;C AN Fragiser ANST A CAN by T
and T=7, T’
then, either YT € T’. TaskComplete(T)

or AT". T =,, T".

3.2.7. Controlling fragmentation. A consequence of LoCalP® introducing fresh regions is that the
schedule of evaluation dictates the way a value is laid out on the heap, as shown in Figure 3.14. Every
choice to parallelize an intra-region allocation implies the creation of a new region and a new indirec-
tion, thereby introducing fragmentation. Thus, in addition to the usual task-scheduling overheads, in our
system, a schedule that parallelizes too many allocations also leads to fragmentation. Conversely, effort
at amortizing the overhead of parallelism simultaneously amortizes the overhead of indirections and re-
gion fragmentation. We return to this topic and address fragmentation along with parallelism granularity

management in Section 3.3.1.

46

3. RECONCILING PARALLELISM AND SERIALIZATION

L«]] |
field 1 field 2 field 3
(a)
/7 ™\
L«] | [e] |
field 1 field 2 field 3
(8)
/" ™ T
L«] [¢] [[¢] |
field 1 field 2 field 3
(c)

Ficure 3.14. The heap layout for a data constructor if: (a) all fields are allocated sequen-
tially, (b) only the second and third fields are allocated in parallel with each other, and (c)

all fields are allocated in parallel.

3.3. Implementation

Gibbon is a whole-program’ micropass compiler that compiles a polymorphic, higher-order subset of
(strict) Haskell®. The Gibbon front-end uses standard whole-program compilation and monomorphization
techniques [18] to lower input programs into a first-order, monomorphic representation. On this repre-
sentation, Gibbon performs location inference to convert it into a LoCal program, which has region and
location annotations. Then a big middle section of the compiler is a series of LoCal=LoCal compiler passes
that perform various transformations. Finally, it generates C code.

Our parallelism extension operates in the middle section, with minor additions to the backend code
generator and the runtime system. We add a collection of LoCal=LoCal compiler passes that transform

the program so that reads and allocations can run in parallel. At run time, we make use of the Intel

IGibbon’s automatic selection of data representation works best if it can see the whole program, much like the data-
representation optimizations in MLton. One way to get around this issue would be to make the programmer responsible for
choosing the representation, by using appropriate annotations in datatype definitions. Another option is to conservatively insert
random-access information in all datatypes that flow into code within other compilation units. Our current implementation does

not offer these options, and only supports whole program compilation.

2Note that we are not the first to propose a strict variant of Haskell, not only do many of its cousins like Idris take a strict

approach, but GHC itself supports a module-level strict mode.

47

3. RECONCILING PARALLELISM AND SERIALIZATION

Cilk Plus language extension [14] (and its work-stealing scheduler) to realize parallel execution. Our
implementation closely follows the formal model described in Section 3.2.2, but with explicit parallelism

annotations.

3.3.1. Granularity control. Before going further into the details of what we implemented, we first
explain our choices in what we do and do not implement. As we saw in Figure 2.1a, we use manual
annotations for the programmer to mark parallelism opportunities. This is the norm in both current and
past parallel programming practice: from MultiLisp [29] to OpenMP [43], Cilk [14], Java fork-join [36], etc.
Recall also that with a purely functional source language, parallel-tuple annotations change performance
only, not program semantics, so a programmer need not worry about safety when inserting annotations®.
Task granularity thresholds can be fine-tuned by using the same reasoning as in other parallel systems —
switch to sequential for small problem sizes. But there’s also the issue of fragmentation (Section 3.2.7), i.e.
amortizing the overhead of pointers in the representation as well as parallel tasks in the control flow. One
might wonder how these interact.

3.3.1.1. How to optimize granularity in Gibbon? Relatively small chunks of sequential data can
effectively amortize the cost of creating regions and indirections. For instance, serializing just the bottom
two levels in our binary tree examples eliminates 75% of pointers and ensures pointers use only 11% of
memory. The task size to amortize parallel scheduling overheads, on the other hand, is usually much larger.
Therefore, it’s best the Parallel Gibbon programmer thinks about parallelism granularity exclusively, and
the data representation can comfortably follow from that. In other words, a manual (or automatic) solution
to task granularity, also gives “for free”, an efficient, mostly-serialized data representation with amortized
indirections.

3.3.1.2. Why not automatic granularity? Automatic task-parallel granularity control is an active
research area [4, 3]. Combining Parallel Gibbon’s automatic control over data representation, together with
automatic granularity control, is a promising avenue for future work. This goes doubly so if approaches
like Heartbeat scheduling [4] mature to the point of offering robust backends and runtime systems that
compilers like Parallel Gibbon may target, and very recent work offers a step in that direction [49].

Here, however, it would be confounding to address automating granularity simultaneously with com-
pacting data representation and assigning regions. In our experiments (Section 3.4), we hold task gran-
ularity constant across different implementations of the same benchmarks, focusing only on the impact

3This same property holds for inserting parallel annotations in pure GHC Haskell code, which has been used to modest
benefit in past experimental work [30], but is not commonplace practice.

48

3. RECONCILING PARALLELISM AND SERIALIZATION

of each compiler’s code generation and data representation choices. Parallel Gibbon, as well as all of its
competitors, use explicit parallelism annotations, and schedule the same set of tasks at runtime for the

same program inputs, unless mentioned otherwise.

3.3.2. Desugaring parallel tuples. As shown in Figure 2.1a, in the front-end language, we use the
standard parallel tuples to express parallelism, like other eager, parallel functional languages [50, 67]. A
parallel tuple (e1 || e2) marks the expressions el and e2 to evaluate in parallel with each other. To more
closely match Cilk, we desugar these parallel tuples into a spawn/sync representation in the compiler IR:

let x = spawn el in

let y = €2 in

let = sync 1in

(x,y)

Using this representation simplifies the subsequent conversion to LoCal, in which additional steps like
allocating regions or binding locations may be required before getting to el or e2. Generating the cor-
responding letregion/letloc bindings, such that they have the correct scope, is easier with a spawn/sync
representation. Also, we preserve these parallelism annotations in the LoCal code we generate. In contrast
with the formal model (with implicit parallelism, Section 3.2), let y = e2 is always sequential, whereas
let y = spawn e2 essentially corresponds to a potentially parallel let binding, though the decision is ulti-
mately dynamic.

We do not support first-class futures, or tasks that communicate through channels or other mutable
data structures, and thus the task-parallelism opportunities available in Parallel Gibbon remain effectively
series-parallel. But this is sufficiently expressive for writing a large number of parallel algorithms. Note
that the formal model can express some local, non-escaping futures that are not strictly series-parallel by
using parallel lets that are forced out of order. This pattern of parallelism does not provide much additional
expressive power over that provided by parallel tuples, so we do not give up much by not exposing this

capability in the front-end language.

3.3.3. Indirection pointers. In the implementation, we need a runtime representation of optional
pointers to include in the data that corresponds to the indirections in the semantics (Section 3.2.1). For-
tunately, in the Gibbon compiler there is already a pointer mechanism that is sufficient for our pur-
poses. This exists because of how Gibbon’s regions grow—rather than copying data into a larger buffer,

Gibbon accumulates a linked list of contiguous chunks, doubling the size on each extension. The last

49

3. RECONCILING PARALLELISM AND SERIALIZATION

filled cell in a chunk is an indirection into the next chunk. Indirections also enable Gibbon to allocate
a value that is shared between multiple locations (within the same region or across regions) without re-
quiring a full copy, which is crucial for ensuring asymptotic complexity conservation of programs. Vari-
able aliases indicate this sharing to the compiler. For example, the aliased variable x in the expression
(let x = mkBigExpr in Plus x x) indicates that a single, shared value must be allocated for the left and right
subtrees of Plus. Gibbon rewrites this expression to (let x = mkBigExpr in Plus x (IndPtr x)), where the
right subtree is an indirection pointing to the data allocated for the left. Similarly, the identity function
(id x = x) becomes (id x = IndPtr x). The shared scalar values such as numbers and booleans are always
copied, because it is more efficient to do so. In Parallel Gibbon, we reuse this indirection pointer mechanism

to implement intra-region parallel allocations.

3.3.4. Parallel reads. Using static analysis, Gibbon can infer if a dataype requires offsets, and it can
transform the program to add offsets to datatypes that need them. In sequential programs, these are used
to preserve asymptotic complexity of certain functions. In Parallel Gibbon, we use these offsets to enable
parallel reads. We update that static analysis, and add offsets if a program performs parallel reads, i.e. via

a clause in a case expression that accesses a data-constructor’s fields in parallel.

3.3.5. Parallel allocations. The implementation of intra-region parallel allocations closely follows
the design described in Section 3.2. A program transformation pass generates code that allocates fresh
regions and writes indirection pointers at appropriate places. But the metafunctions MergeS and MergeM
which merge task memories at join points have a different run time behavior compared to their formal
definition. The implementation does not have a direct notion of a store. At run time, a region variable
r is only a structure containing a pointer to the start of a memory buffer and some metadata necessary
for garbage collection. Two memory buffers are merged (linked) simply by writing a single indirection
pointer in one of them. This operation is relatively cheap compared to the set union used in the formal
definition. Similarly, the implementation does not have a direct notion of a location map, and therefore
there is no run time operation equivalent to MergeM. At run time, all location variables become absolute
pointers into the heap.

But there still exists an issue with fragmentation. With granularity control — in the form of judicious
use of parallel tuples — we can restrict excessive creation of fresh regions, but the number of regions
created will still always be equal to the number of parallel tasks spawned by the program. This can still

cause fragmentation because all spawned tasks might not actually run in parallel.

50

3. RECONCILING PARALLELISM AND SERIALIZATION

The key insight is to make the number of fresh region allocations equal to the number of steals, not
spawns. That is, because our implementation uses a work-stealing scheduler, but the general idea applies
to other schedulers as well: fragmentation should be proportional to parallelism in the dynamic schedule,
not the static potential for parallelism. Our implementation creates fresh regions for intra-region parallel
allocations only if they really run in parallel. We accomplish this by using the Cilk Plus API to implement a
hook to detect when steals occur. Before reaching a parallel fork point (spawn), the runtime system stores
the ID of the worker executing the current code. Next, the corresponding ID is immediately fetched in the
continuation of the fork point. If the IDs match, it indicates that a steal did not occur. This optimization

enables parallel allocations with minimal fragmentation.

3.3.6. Parallel arrays. Programs need arrays as well as trees. We extend Gibbon with array prim-
itives such as alloc, length, nth, slice, and inplaceUpdate, and use them to build a small library of parallel
array operations with good work and span bounds. The ability to safely mutate an array in-place allows
us to implement optimizations that go beyond what is commonly allowed in a purely functional language.
This is enforced using the new Linear Haskell extensions [9], for example, the signature of an O(1) array

mutation is:

inplaceUpdate :: Int — a — Array a —o Array a

Using these primitive operations, collective operations on arrays are implemented as recursive divide-
and-conquer functions in Parallel Gibbon that use parallelism annotations®. For example, our parallel map
first allocates an array to store the output, and then updates it in parallel with inplaceUpdate. But all such
potentially-racy operations are hidden behind a pure interface. Also, an Array in Parallel Gibbon can only
store primitive values such as numbers, booleans, and n-ary tuples of such values. In the future, we plan

to explore ways to support data-parallel operations on serialized algebraic data.

3.4. Evaluation

In this section, we evaluate our implementation using a variety of benchmarks from the existing lit-
erature, as well as a new compiler benchmark. To measure the latent overheads of adding parallelism,
we compare our single-thread performance against the original, sequential LoCal, as implemented by the
Gibbon compiler. Sequential Gibbon is also a good baseline for performing speedup calculations since

“These combinators offer variants to explicitly control sequential chunk size, or to use the common heuristic of splitting into

a number of tasks that is a multiple of the number of cores (provided as a global constant).

51

3. RECONCILING PARALLELISM AND SERIALIZATION

its programs operate on serialized heaps, and as shown in prior work, are significantly faster than their
pointer-based counterparts. Note that prior work [66] compared sequential constant factor performance
against a range of compilers including GCC and Java. Since Sequential Gibbon outperformed those com-
pilers in sequential tree-traversal workloads, we focus here on comparing against Sequential Gibbon for
sequential performance.

We also compare the performance of our implementation to other languages and systems that support
efficient parallelism for recursive, functional programs — MaPLe [67], Multicore OCaml [37, 56], and GHC.
MaPLe (an extension of MLton) is a whole-program, optimizing compiler for Standard ML [45]; it supports
nested fork/join parallelism, and generates extremely efficient code.

The experiments in this section are performed on a 48 core machine (96 hyper-threads) made up of
2 X 2.9 GHz 24 core Intel Xeon Platinum 8268 processors, with 1.5TB of memory, and running Ubuntu
18.04. The shared memory on this machine is divided into two NUMA nodes such that CPUs ¢-23 and
48-71 use node-0 as their local memory node, and 24-47 and 72-95 use node-1. In our experiments we only
use 48 threads (no SMT), evenly distributed across both NUMA nodes (numactl ——physcpubind=48-95). All
experiments are performed using the default memory allocation policy which always allocates memory
on the current NUMA node. We observed that using a round-robin memory allocation policy (option
——interleave=0,1) did not affect performance, and therefore we do not report those results.

Each benchmark sample is the median of 9 runs. To compile the C programs generated by our imple-
mentation we use GCC 7.4.0 with all optimizations enabled (option -03), and the Intel Cilk Plus language
extension [14] (option -fcilkplus) to realize parallelism. To compile sequential LoCal programs we use the
open-source Sequential Gibbon compiler, but we modify it to include arrays with in-place mutation using
linear types, just like Parallel Gibbon. For MaPLe, we use version 20200220.150446-g16af66de5 compiled from
its source code. For OCaml, we use the Multicore OCaml compiler [56] (version 4.10 with options -03),
along with the domainslib ° library for parallelism. We use GHC 8.6.5, with options -threaded -02, along

with the monad-par [40] library for parallelism.

3.4.1. Benchmarks. We use the following set of 10 benchmarks. For GHC, we use strict datatypes in
benchmarks, which generally offers the same or better performance, and avoids problematic interactions
between laziness and parallelism. All programs use the same algorithms and datatypes (including mutable

arrays, which are provably race-free in Gibbon and GHC), have identical granularity control thresholds,

Shitps://github.com/ocaml-multicore/domainslib

52

3. RECONCILING PARALLELISM AND SERIALIZATION

and are run with the same inputs. This way, each pairing of program and input creates a deterministic
task graph — which does not change when varying the number of threads — and the evaluation focuses

on data representation and code generation, rather than on decomposing and scheduling parallel tasks.

o fib: Compute the 48th fibonacci number with a sequential cutoff after depth=18: a simple baseline
for scaling.

e buildtreeHvyLf: This is an artificial benchmark that is included here to measure parallel alloca-
tion under ideal conditions. It constructs a balanced binary tree of height 18, and computes the
20th fibonacci number at each leaf, with sequential cutoff after depth=12.

e buildKdTree and countCorrelation and allNearest: buildkDTree constructs a kd-tree [25] con-
taining 1M 3-d points in the Plummer distribution. The sequential cutoff is at a node containing
less than 32K points. countCorrelation takes as input a kd-tree and a list of 100 3-d points, and
counts the number of points which are correlated to each one. The chunk-size for the parallel-
map is 4, and the sequential cutoff for countCorrelation is at a node containing less than 8K points.
allNearest computes the nearest neighbors of all 1M 3-d points. The chunk-size for the parallel-
map is 1024.

e barnesHut: Use a quad tree to run an nbody simulation over 1M 2-d point-masses distributed
uniformly within a square. The chunk-size for the parallel-map is 4096.

e coins This benchmark is taken from GHC’s NoFib © benchmark suite. It is a combinatorial search
problem that computes the number of ways in which a certain amount of money can be paid by
using the given set of coins. The input set of coins and their quantities are [(250,55), (100,88),
(25,88),(10,99), (5,122),(1,177)1, and the amount to be paid is 999. The sequential cutoff is after
depth=3.

e countNodes: This operates on ASTs gathered from the Racket compiler when processing large,
real programs. The benchmark simply counts the number of nodes in a tree. For our implemen-
tation, we store the ASTs on disk in a serialized format which is read using a single mmap call. All
others parse the text files before operating on them. To ensure an apples-to-apples comparison,
we do not measure the time required to parse the text files. The size of the text file is 1.2G, and
that same file when serialized for our implementation is 356M. The AST has around 100M nodes

in it. The sequential cutoff is after depth=9.

Shttps://gitlab.haskell.org/ghc/nofib

53

3. RECONCILING PARALLELISM AND SERIALIZATION

e constFold: Run the constFold function shown in Figure 2.1 on an artificially generated syntax-
tree, which is a balanced binary tree of Plus expressions, with a Lit as a leaf. The height of the
syntax-tree is 26, the sequential cutoff is after depth=8.

e mergeSort: An in-place parallel merge sort, which bottoms out to a sequential quick sort when
the array contains less than 8192 elements. For our implementation, we use the gsort function
from the C standard library to sort small arrays. The Haskell implementation is taken from Kuper
et al’s artifact accompanying their paper [35], and it makes an FFI call to a sequential quick sort
written in C. MaPLe and OCaml bottom out to a sequential quick sort implemented in their source

language. The input array contains 8M randomly generated floating point numbers.

3.4.2. Results: Parallel versus Sequential Gibbon. Figures 3.15a and 3.15b show the results of
comparing performance of benchmarks compiled using our parallel implementation, labeled “Ours”, rel-
ative to Sequential Gibbon. The quantities in the table can be interpreted as follows. Column T; shows
the run time of a sequential program. which serves the purpose of a sequential baseline. T; is the run
time of a parallel program on a single thread, and O the percentage overhead relative to T, calculated as
((Ty - T) / Ts) % 100. Tyg is the run time of a parallel program on 48 threads and S is the speedup relative to T,
calculated as T;/Tys. R is the number of additional regions created to enable parallel allocations, calculated
as Ryg — R;. For a majority of benchmarks, the overhead is under 3%, and the speedups range between 31.7x
and 43.5%. These speedups match, or in cases such as barnesHut and allNearest, exceed those of optimized
implementations that have been analyzed on similar machines [54, 67, 4].

With respect to the difference in speedups between different benchmarks, we see the expected rela-
tionship among them which reflects their memory access patterns. Compute-bound benchmarks such as
fib scale very well, whereas benchmarks such as constFold and buildkdTree can become memory bound,
and do not scale over a certain number of cores’. With respect to buildkdTree, a significant portion of its
total running time is spent in sorting the points at each node. We observed that our mergeSort doesn’t scale
well on small inputs, and since buildkdTree performs a series of smaller and smaller sorts, it eventually runs
into this, leading to lower scalability. But its high overhead (14.6%) and low speedup (10.6X) are in the same
ballpark as an optimized C implementation which [20] analysed on a 32-core machine. Tables 3.2 and 3.3
show that MaPLe, GHC and OCaml also scale similarly. Overall, these results show that our technique is

able to handle parallelism in a mostly-serialized data representation effectively.

"For example, a simple parallel dot-product computation (in Cilk) has a similar linear access pattern and low arithmetic

intensity to constFold, and it achieves only a 6X speedup on this same machine.

54

3. RECONCILING PARALLELISM AND SERIALIZATION

Gibbon Ours

Benchmark T, T (0] Tys S

fib 12.8 128 0 031 413
buildtreeHvyLf 4.69 469 0 011 426
buildKdTree 2.33 2,67 146 0.22 10.6
countCorr 1.46 1.47 0.68 0.044 33.2
allNearest 1.0 1.01 1 0.023 435
barnesHut 3.21 321 0 0.074 434
coins 3.04 313 3 0.096 31.7
countnodes 0.21 0.21 0 0.006 35.0
constFold 1.78 .78 0 016 11.1
x86-compiler 1.08 1.08 0 0.041 263
mergeSort 1.58 1.60 1.27 0.039 40.5
average - - 1.28 - 29.5

(a) T is the run time of Sequential Gibbon. T; and Tyg are the run times of Parallel Gibbon on 1 thread and on 48
threads respectively. O is the single-thread percentage overhead: O = (T} — T;) /T * 100. S is the 48-thread speedup:
S = Ts / T4g.

48

fib —+—
buildtreeHvyLf —%¢—
buildKkdTree
countCorr
allNearest /
36 + barnesHut —e—
coins —e—
countnodes ——a— X,
constFold —&—
x86-compiler —w—
mergeSort

24

12F G

12 24 36 48
Cores

(B) Speedups relative to Sequential Gibbon.

FIGURE 3.15. Parallel Versus Sequential Gibbon.

55

3. RECONCILING PARALLELISM AND SERIALIZATION

Fragmentation. Traversals on a serialized heap are efficient because serialization minimizes pointer-
chasing and maximizes data locality. But the heap produced by running intra-region allocations in parallel
is fragmented, which can affect the performance of subsequent traversals that consume this heap, due to
additional pointer dereferences and worse locality. To measure this downstream effect, we compare the run
time of a single-threaded traversal operating on a sequentially allocated value to that traversal operating on
a value allocated in parallel, which will be fragmented. Thus, the thing whose run time is being compared—
the traversal—stays the same but it is given inputs that have different levels of fragmentation. We also
measure the amount of fragmentation introduced for parallelism by counting the number of regions created
solely to enable parallel allocations. Table 3.1 shows the results.

We use a subset of the benchmarks from Section 3.4.1 whose output is a serialized value (the other
benchmarks do not measure the construction of new values), and measure the time required to traverse
the output. For example, the benchmark trav(constFold) constructs an input expression, runs constant
folding over it, and then sequentially traverses the resulting expression (counts the number of leaves in
it), but the number reported is only the run time of the traversal and it does not include the time taken to
run constFold itself. Each benchmark sample is the median of 9 runs, such that each run allocates a value
and then traverses it N times, where N is set high enough to get the total run time over one second, and
the run time of a single traversal is reported. T; is the time required to sequentially traverse a sequentially
allocated value, which is the baseline.

We compare against this baseline the performance of traversing a value allocated in parallel with two
levels of fragmentation: optimum and maximum. In the optimum setting, the allocators are identical to
those used for measurements reported in Figure 3.15a. That is, they control fragmentation by control-
ling the granularity of parallelism (using the thresholds given in Section 3.4.1) and are compiled using
the region-upon-steal allocation policy (Section 3.3.5). R,y is the number of additional regions created to
allocate a value in parallel using 48 threads. For example, the sequential constFold uses a single region
and its parallel version requires 132 additional regions (133 regions total). T,; is the time required to se-
quentially traverse the allocated value, and O, is the percentage overhead relative to T, calculated as
Oopt = (Topt — Ts)/T; * 100. In the maximum setting, the allocators do not control fragmentation at all
(no granularity control), and they are compiled using the region-upon-spawn allocation policy, which cre-
ates a fresh region for every intra-region allocation task that is spawned. This setting thus represents the
upper bound on the amount of fragmentation that can be introduced due to parallelism, where the heap

essentially degenerates to a full pointer-based representation. Ry,gyx, Tingx and Oy,qy are the corresponding

56

3. RECONCILING PARALLELISM AND SERIALIZATION

TaBLE 3.1. T is the time required to sequentially traverse a sequentially allocated value.
Ropt is the number of additional regions created to allocate a value in parallel using 48
threads, T, is the time required to sequentially traverse it, and O, is the percentage over-
head of the traversal: Oyps = (Topt —T) /T % 100. Ripax, Tinax and Opax are the corresponding
numbers for a value allocated in parallel using 48 threads with maximum fragmentation.

Omax 1s the percentage overhead relative to T; calculated as O0x = (Tinax — Ts) /T * 100.

Seq Alloc. Optimum Fragmentation Maximum Fragmentation

Benchmark Ts Ropt Topt Oopt Rimax Thax O max
trav(buildtreeHvyLf) 0.99ms 341 1.02ms 3.03 262K 11.45ms 1056.6
trav(buildKdTree) 6.22ms 31 6.64ms 6.75 262K 55ms 784.2
trav(coins) 0.35s 9K 0.37s 5.71 75M 5.21s 1388.6
trav(constFold) 0.30s 132 0.32s 6.67 67M 2.70s 800
trav(x86-compiler) 366.2us 1K 377.5us 3.09 14K 4643ps 26.8
geomean - - - 4.74 - - 476.9

numbers for this fragmentation setting when using 48 threads. O, is the percentage overhead relative
to Ty, calculated as O,0x = (Tiax — Ts) /T * 100.

Comparing R,y and Ryqy, we see that in the optimum setting most of the allocated heap is still serial-
ized and uses only a small number of additional regions—less than 0.13% of the maximum— in most cases.
For x86-compiler, this percentage is higher (7.14%) compared to the other benchmarks because even in the
optimum setting this benchmark does not control the granularity of parallelism, which is controlled only
by the structure of the input as we discuss in Section 3.4.5. In this case, the region-upon-steal allocation pol-
icy is responsible for trimming the number of regions from 14K to 1K. With respect to the run time of the
traversal, the overhead with optimum fragmentation is between 3.03% to 6.75%, with a geomean of 4.74%.
In addition to fragmentation, the NUMA memory policy & has a significant impact on the overall overhead
because in the parallel version potentially 50% of memory accesses are at a non-local NUMA memory node.
If we run the experiment using a single NUMA node (numactl ——membind=@ —-physcpubind=1-24,49-71), the

geomean overhead drops to 1.44%, with a significant reduction in the overheads for buildkdTree (0.96%)

8As described in the experimental setup, the shared memory on this machine is divided into two NUMA nodes and we use

48 threads evenly distributed across both nodes with the default local memory allocation policy.

57

3. RECONCILING PARALLELISM AND SERIALIZATION

and constFold (2.95%). In the presence of maximum fragmentation, we see the expected result: since heap
degenerates to a full pointer-based representation, the traversals are several times slower and the benefits
of using a serialized representation are lost. This slowdown in traversing a pointer-based representation
compared to a serialized one is consistent with the results given in previous work [65, 66]. Overall, these
results show that using the granularity of parallelism to guide the data representation works well in prac-

tice, and gives us an efficient, mostly-serialized representation.

3.4.3. Results: Gibbon versus other compilers. Table 3.2 shows the results of comparing perfor-
mance of our implementation to MaPLe, OCaml, and GHC. For each compiler, Column T; is the run time
of a sequential program, Column Tyg is the run time of a parallel program on 48 threads, and an adja-
cent column to each shows the corresponding speedup (or slowdown) of our implementation relative to
this compiler. For example, on 48 threads, allNearest is 3.95% faster with our implementation compared to
OCaml. Figures 3.16 and 3.17 show how these benchmarks scale on 48 threads. With respect to self-relative
comparisons, on average, we scale similarly to MaPLe, and better than OCaml or GHC.

Across all benchmarks, on a single thread our Parallel Gibbon offers a 1.93%, 2.53%, and 2.14X ge-
omean speedup compared to MaPLe, OCaml, and GHC, respectively. When utilizing 48 cores, our geomean
speedup is 1.92X%, 3.73x and 4.01x. Overall, these results show that we start with a faster baseline in the
sequential world, and we’re able to preserve the speedups in the parallel as well, meaning that the use
of dense representations to improve sequential processing performance coexists with scalable parallelism.
The only benchmark for which our implementation is slower compared to others is coins. This benchmark
makes heavy use of linked-list operations such as cons, head, and tail, and our implementation uses malloc
to allocate memory for every cons, which is inefficient. Also, our dense representation currently offers no
benefit when building linked-lists by cons’ing onto existing lists. All others, MaPLe, OCaml and GHC,
use a copying garbage collector [57, 67, 39] allowing them to use a bump-allocator, making them more
efficient than our implementation. Table 3.3 gives the self-relative performance results for MaPLe, OCaml

and GHC.

3.4.4. Results: Full evaluation details for other compilers. In Section 3.4, we presented the re-
sults for MaPLe, OCaml, and GHC by showing speedups/slowdowns of our implementation relative to
them. In this section, we give the full evaluation results. Figure 3.3 shows the self-relative comparisions

for MaPLe, OCaml and GHC. The quantities in the table can be interpreted as follows. Column T; shows

58

3. RECONCILING PARALLELISM AND SERIALIZATION

TaBLE 3.2. Comparison of Ours with MaPLe, OCaml, and GHC — execution time in sec-
onds, and ratios to Ours. T; is the run time of a sequential program, and Tg is the run time

of a parallel program on 48 threads.

MaPLe OCaml GHC
MaPLe MaPLe OCaml OCaml GHC GHC
Benchmark T, s Tug 48 T, s Tyg 48 T, s Tyg 48
Ours Ours Ours Ours Ours Ours
fib 374 292 1.06 293 21.1 1.65 0.50 1.61 319 25 0.76 245

buildtreeHvyLf14.5 3.09 0.35 3.18 8.60 1.83 025 227 124 264 0.34 3.09
buildKdTree 7.26 3.11 0.41 186 109 4.68 184 836 134 575 2.21 10.0
countCorr 105 7.19 027 6.14 139 952 037 841 354 242 0.15 341
allNearest 238 238 0.06 260 3.01 3.01 0.091 395 2.07 2.07 0.068 2.96
barnesHut 505 157 0.12 1.62 109 340 044 594 497 155 033 446

coins 1.71 056 0.05 052 1.05 034 0.036 037 0.82 0.27 0.085 0.88
countnodes 0.37 176 0.019 3.16 046 2.19 0.034 5.67 1.45 6.90 0.049 8.16
constFold 236 132 023 144 17.7 994 223 139 3.71 2.08 0.64 4.00

x86-compiler 1.34 1.24 0.042 1.02 120 1.11 0.09 220 234 216 044 10.7
mergeSort 1.74 1.10 0.047 120 383 242 0.19 487 274 1.73 0.16 4.10

geomean - 1.93%x - 1.92x - 253X - 3.73x - 2.14x - 4.01x

the run-time of a sequential program, which serves the purpose of a sequential baseline. T is the run-
time of a parallel program on a single thread, and O the percentage overhead relative to T, calculated as
((T; —T;)/T;) *100. T is the run-time of a parallel program on 48 threads and S is the speedup relative to T,
calculated as T /Tys. These comparisions are self-relative, meaning that they compare sequential MaPLe to
parallel MaPLe, sequential OCaml to parallel OCaml, and sequential GHC to parallel GHC. With respect to
self-relative comparisons, on average, we scale similarly to MaPLe, and better than OCaml or GHC, and the
single-thread overhead across all four compilers is comparable to each other. Figure 3.16 shows speedups
on 1-48 threads relative to the fastest sequential baseline, which is Sequential Gibbon for all benchmarks

except coins, for which GHC is fastest.

3.4.5. Results: x86-compiler case study. As an example of a complex benchmark which performs

multiple traversals over different datatypes, we implement a subset of a compiler drawn from a university

59

48

36

24t

3. RECONCILING PARALLELISM AND SERIALIZATION

Ours —&— Maple —*— OCam| —&— GHC —8—

48

36|

24

24 36

0
(a) fib
e
12 24 86 48
(c) buildKdTree

() barnesHut

48

48

36|

48

36|

24

36 48

(B) buildtreeHvyLf

(D) countCorr

() coins

48

36|

24t

(e) allNearest

(a) countnodes

FIGURE 3.16. Speedups relative to the fastest sequential baseline, which is Sequential Gib-

bon for all benchmarks except coins, in which case sequential GHC is fastest.

course [55]. Our version compiles to x86, from a source language that supports integers and arithmetic and

comparison operations on them, booleans and operations such as and and or, and a conditional expression,

if. To compile this high-level language, we first translate it to an intermediate language similar to C, in

which the order of evaluation is explicit in its syntax. The compiler is written in a nanopass style [51],

60

3. RECONCILING PARALLELISM AND SERIALIZATION

Ours —&— Maple —*— OCam| —&— GHC —8—

48 48 48
36 36}
241 24

12F 12F b

El :

0 ry 0 i i i
0 12 24 36 48 0 12 24 36 48
(A) mergeSort (B) constFold (c) x86-compiler

FIGURE 3.17. Remaining plots showing speedups relative to the fastest sequential baseline.

and is made up of five passes: (1) typecheck type checks the source program, (2) uniqify freshens all bound
variables to handle shadowing, (3) explicateControl translates to an intermediate language similar to C,
(4) selectInstructions generates x86 code which has variables in it, (5) and assignHomes maps each variable
to a location on the stack. The input to this benchmark is a synthetically generated, balanced syntax-tree
with conditional expressions at the top, followed by a sequence of let bindings. The structure of the input
program is used to control the granularity of parallelism. The first three passes process the branches of
conditionals in parallel, and subsequent ones process every block of instructions in parallel.

On this compiler benchmark, Parallel Gibbon offers a 1.24%, 1.11X, and 2.16X speedup on a single
thread, and 1.02x%, 2.20x and 10.7Xx speedup when utilizing 48 threads, compared to MaPLe, OCaml, and
GHC, respectively. Note that most of the run time and also the self-relative parallel speedup of this bench-
mark is due to assignHomes. The first four passes of the compiler have a linear memory access pattern and
low arithmetic intensity, much like constFold. The passes inspect the input expression, perform inserts or
lookups on shallow environments (which only contain entries for variables that are in scope at a point), and
then allocate the output. But assignHomes works in a different way. Since it needs to assign a unique stack
location to every variable occurring in an expression, it constructs an environment containing all variables
in the expression (as opposed to just those in scope at a point), and then performs repeated lookups on
it to rewrite variable occurrences with stack location references. This environment is significantly larger
than those used by other passes, making assignHomes much more work-intensive and suitable for parallel

execution.

61

3. RECONCILING PARALLELISM AND SERIALIZATION

TaBLE 3.3. Execution time in seconds, self-relative overheads on a single thread (Columns
3, 8 and 13) and self-relative speedups on 48 threads (Columns 5, 10 and 15). T; is the
run-time of a sequential program. T; and Tys are the run-times of a parallel program on
1 thread and on 48 threads respectively. O is the single-thread percentage overhead: O =
(T — T) /T, * 100. S is the 48-thread speedup: S = T;/Tys.

MaPLe OCaml GHC

Benchmark I, T O T,s S T, Thh O Ty S Iu,. i O Tz S

fib 374386 3.2 091 41.1 21.121.1 O 0.5 422 31.931.8-03 0.76 42
buildtreeHvyLf 14.5 14.6 0.69 0.35 41.4 86 8.6 0 0.25 344 124124 0 0.34 36.5
buildKdTree 7.26 7.65 5.37 0.41 17.7 10.9 11.7 7.34 1.84 5.92 13.413.6 1.5 2.21 6.06
countCorr 10.510.5 0 0.27 38.9 13.915.0 7.9 037 37.6 3.543.57 0.84 0.15 23.6
allNearest 238 2.4 0.84 0.06 39.6 3.013.09 2.65 0.091 33.1 2.07 2.04 -1.4 0.068 30.4
barnesHut 5.05533 55 0.12 42 109 11 091 044 24.7 4.975.29 64 033 15.1
coins 1.71 1.51 -11% 0.05 34.2 1.05 1.07 1.9 0.036 29.1 0.820.82 0 0.085 9.6
countnodes 0.37 0.38 2.7 0.019 19.5 0.46 0.45 -2.17 0.034 13.5 1.45 1.46 0.68 0.049 29.6
constFold 2.36 3.29 394 0.23 103 17.719.2 85 2.23 7.94 3.713.99 7.55 0.64 5.80
x86-compiler 1.34 1.33 -0.74 0.042 31.9 1.2 1.3 8.33 0.09 13.3 2.342.38 1.7 0.44 5.31

mergeSort 1.74 1.84 5.75 0.048 36.3 3.83 3.94 2.87 0.19 20.16 2.74 2.95 7.66 0.16 17.1

average - - 329 - 337 - - 414 - 153 - - 135 - 15.2

Here we have only taken the first step towards developing an efficient parallel compiler, and there is
ample opportunity for further investigation in this area. In the future, we plan to expand the compiler’s
source language to include constructs such as top-level function definitions and modules which are a source

of parallelism in many real compilers.

62

Memory Management for Mostly-Serialized Heaps

In this dissertation, we propose a garbage collector that takes Gibbon from a domain-specific tool for
tree traversals to a general-purpose functional language implementation. We adopt the tried-and-true design
of the tracing, generational collector, which is used by many state-of-the-art implementations of functional
languages. Gibbon’s denser data representations violate many of the usual assumptions baked into many
memory management systems, making them unsuitable to be directly used. In this setting, the solution
we propose is a generational collector with a copying (and compacting, and pointer-eliminating) collector
for its younger-generation, while keeping Gibbon’s reference-counted-regions for the older generation,
which now become partial/deferred reference counts’, similar to Ulterior Reference Counting [11]. The
new system, GC-Gibbon, includes several novel features to deal with the mostly-serialized setting. We
must introduce new regions during collection time, to keep all roots valid after collection (Section 4.1.1).
Because values continue growing after promotion to the old-generation, we choose to allow allocation
into old-generation regions (Section 4.1.2), which in turn incurs a need for a remembered set. we allow
sharing, in spite of the fact that many objects are smaller than a word-sized pointer, and thus develop a

new approach to forwarding pointers (Section 4.1.3). In this chapter:

e We introduce a new garbage collection algorithm that deals with dense data, where the presence
of pointers or header objects cannot be counted on. The hybrid approach of reference-counted
regions and copying collection enables fast bump-allocation of new objects and regions, while
retaining efficient handling of large and growing regions.

e We present a suite of solutions to the above challenges (Section 4.1) that enable the first practical,
complete, and correct solution to automatic memory management in mostly-serialized heaps.

e We evaluate the resulting system (Section 4.3) on both tree-traversals, and benchmarks that stress
small object allocation and collection. This new approach retains Gibbon’s strong performance

on tree-traversals (where the serialized data approach is most effective) and improves Gibbon to

IHeap cycles are not possible in a pure, strict setting, but we still need backup tracing collection of the old-generation, for

defragmentation.

63

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

achieve reasonable performance on out-of-order small allocations where the approach is weakest,
more closely resembling mature compilers and runtime systems that have been heavily optimized
for such programs, using traditional memory representations. For small allocations, our system
is 3.79%, 0.46%, and 1.09x geomean faster than Legacy-Gibbon, GHC, and Java, respectively. For

bulk-tree-traversals, our geomean speedup is 1.02X%, 2.19% and 1.5X.

4.1. Design

The main challenge we address is that of efficiently copying mostly-serialized objects, while maintain-
ing sharing. To maintain sharing efficiently, our collector has to cope with many objects being smaller
than a word-sized pointer, there being partially written objects, and there being pointers into the middle
of objects at arbitrary byte offsets.

A collection starts when the mutator® requests a new chunk and the resulting heap size would exceed
a certain threshold®. All new chunks are allocated in the young generation (or, nursery) by bumping the al-
location pointer. When it becomes full, the young-generation is collected by a copying collector. Although
it is common to divide the young-generation into equal semispaces [17], our design does not. Instead, we
use single slab of memory to serve as the young-generation, and we have the old-generation serve directly
as the old-generation (i.e., the destination for copying data during collection).

In the next few sections, we concern ourselves with how we treat a minor collection, tracing the
young-generation, and copying to a different region representation in the old-generation where regions
are granted their own growing, memory allocations, and equipped with extra metadata. At the end of
minor collection, old-generation objects may be freed due to (deferred) reference count changes, yet old-

generation tracing does not occur until a major collection (Section 4.1.5).

4.1.1. GC roots and evacuation. We use a shadow-stack [31] to maintain a root set of live objects
for collection. Following the convention, addresses of objects (locations in LoCal) that are live after an
allocation point (letregion) are spilled to the shadow-stack, and are restored later, potentially having been
updated by an intervening collection. Spilling is also necessary across function call sites, as the function

body might perform allocations. Along with the spilled location, we also spill and restore the end-of-chunk

>The user program, which mutates the heap.

3There is only one expression whose evaluation may trigger a collection—letregion—which allocates the initial chunk for
a new region. Perhaps unintuitively, the application of a data constructor never triggers a collection, although it may grow a

region, which involves adding chunks directly to the old-generation Section 4.1.2.

64

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

address for the chunk that the spilled location points into. There are two reasons: (1) if the location points
into a young-generation chunk, it will be promoted to the old-generation and its end address will change,
and (2) if it points into an old-generation chunk, the collector would require its end address to access the
region-level metadata (reference count, outset etc.) whose address is stored at the footer. Also, the type
of the value residing at the spilled location is stored on the shadow-stack. It serves as a numeric index
into an info-table (described in Section 4.2) that stores layout information required to guide the evacuation

routine. Each frame on the shadow-stack is represented as follows:

struct shadowstack_frame { char xptr; char xendptr; uint32_t type; 3};

We now present the algorithm—given in Figures 4.1, 4.2, 4.3—to evacuate each root in the root set.
Here we focus our attention on evacuating complete objects without maintaining sharing. We will discuss
how we handle incomplete objects and maintain sharing extensively in subsequent sections. The main
entrypoint of the algorithm is evacuate_root (given on line 5 in Figure 4.1). It first checks whether a young-
generation object has already been evacuated, in which case it writes to the start and end addresses of
the root the corresponding addresses of the relocated data in the old-generation (using the forwarding
pointer mechanism described in Section 4.1.3). Otherwise, it allocates a fresh region in the old-generation
to relocate this object. This fresh region can grow during collection, using the normal policy of doubling
the size of each additional chunk in the linked series of chunks. Then, it learns the kind of object it is
evacuating by inspecting the first tag in the object, after which it carries out the evacuation accordingly.
After completing evacuation, the start and end addresses of the root are updated the same as before.

To evacuate an object (line 3 in Figure 4.2) it is copied from the source address, namely from_start, to
the destination address, namely to_start. Recall that an object has two subcomponents, a fixed portion
consisting of a tag and constant-sized fields, and an extended portion containing variable number of bytes
due to the child objects. The fixed portion is copied directly using memcpy, and the child objects are processed
by recursively inlining them into the destination region. We use a worklist (line 18 in Figure 4.2) instead
of call-stack based recursion since that is more efficient in our experience.

The first tag of the object can be one of the following, which informs how it will be evacuated:

e Tagged indirection pointer: If the target of the pointer is in the young-generation, it is inlined
by copying its data. Otherwise, the indirection pointer is copied as it is. In the latter case, the

indirection pointer written by the collector is an old-to-old pointer, and thus the reference count

65

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

global
global
global

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

info_table[] -- store type layouts per data constructor (static)
fwd_table[] -- map spans of young-generation memory to old-generation
skip_table[] -- map address of value start to its end

fun evacuate_root(from_start, ty):

if in_oldgen?(from): -- skip root

else

else:

if already_marked?(from): update_root(fwd_addr(from_start))
(to_start, to_end) := alloc_oldgen_region()
evacuate_object(from_start, ty, to_start)

update_root(to_start, to_end)

- Returns a pointer into the old-generation, after the given value

fun skip_over (from):

assert(not(zero_location?(from)))

return skip_table[from]

—— Returns a pointer in the old-generation

fun fwd_addr (from):

—-— For

the first location in the region, the region metadata lets us forward.

if zero_location?(from): return footer_fwd_ptr(region(from))

else:

while offset < max_scan:
let next = deref(from + offset)
match(next):
Forwarded(addr): return (addr - offset)
Burned: offset += 1
—— The interval-map maps source to target bytes by internally mapping entire
—— (src..src+k) = (dst..dst+k) ranges efficiently:

return fwd_table[from] -- side metadata lookup = slow path

FIGURE 4.1. Part of the evacuation algorithm. Global definitions, helpers, and entrypoint

to begin evacuation. See also Figures 4.2 and 4.3.

66

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

—— Recursively evacuate the value at a given location, with the given type. Because of the acyclic heap,

—— this will never recur back to the same location.

10

11

12

13

14

16

17

19

20

21

22

23

24

25

26

27

28

29

fun evacuate_object(from_start, ty, to_start):

let
let
let
let

let

fun

ty_stk = [ty]

to = to_start

from = from_start
span_start = from_start

span_bytes = 0

end_span():

if span_bytes > max_span:

let sz = from - span_start
fwd_table[span_start .. sz] := to-sz .. to
span_bytes := @
span_start = from

—— One evacuate-and-burn session on one contiguous interval:

while (from_ty = pop(ty_stk)):

while (chunk_redirection?(from)):

forward_obj(from, to)
from := deref (from)

end_span ()

if indirection?(from):

- - start a separate interval in a new chunk:

to' = evacuate_object(deref(from), from_ty, to)
forward_obj(from, to)

from += TAGGED_INDIRECTION_SIZE

to := to'

end_span ()

FiGURE 4.2. Continued from figure 4.1, core burning and forwarding algorithm for sharing

maintenance.

67

10

11

12

13

14

15

16

17

18

19

20

21

22

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

else if already_marked?(from):
to := write_indirection(to, fwd_addr(from))
if non_empty?(ty_stk):
from := skip_over (from)
end_span ()
else: -- regular data-copying codepath
- - advance to,from cursors past the data written:
(to',from') =
write_tag_and_scalars(to, from)
- look up types of 0 or more non-scalar data fields (children):

push_children(stk, info_table[from])

fwded = burn_or_forward_obj(from)
to := to'
from := from'

if fwded: end_span()

else: span_bytes += from' - from
if not(zero_location?(from_start)):
—— Populate for future slowpath lookups one byte after the end

skip_table[from_start] := to

return to

FIGURE 4.3. Continued from figure 4.2, rest of the forwarding algorithm.

of the region containing the target object must be updated, as our (deferred) reference counts

include only old-generation pointers.

Updating reference counts requires accessing the target region’s metadata, which must be
findable given only the contents of the tagged indirection pointer being copied. To accomplish
this we use the 64-bit indirection pointers to pack in both (1) the address of the target object, and

(2) the offset from there to the target chunk’s footer—which is where the region metadata resides.

We give details of this pointer encoding in Section 4.2.

68

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

Recall that the mutator uses indirection pointers to share objects among different regions.
Thus, there is additional work required here to carry forward this sharing into the old generation.
We postpone this discussion to Section 4.1.3.

¢ End-of-chunk pointer: Due to the eager promotion policy (Section 4.1.2) the target of an end-
of-chunk pointer is always in the old-generation, and thus an object is considered completely
evacuated upon reaching this tag. But, we still need to combine metadata information for two
regions: (1) the fresh region that was created to copy the object that ends in this end-of-chunk
pointer, and (2) the old-generation region that was created earlier due to eager promotion to store
the remainder of this object. For this reason, all end-of-chunk pointers also need to encode an
offset from their target to the target chunk’s footer. After this step, one of the region metadata
objects is deleted since an end-of-chunk pointer always links two chunks of the same logical
region.

e Burned or forwarded object: Objects which have already been evacuated before are marked as
burned or forwarded, depending on whether there’s enough room for a forwarding pointer. We
discuss these extensively in Section 4.1.3.

e Regular data constructor: If the tag is not among the reserved tags listed above, it corresponds
to an allocation of a regular data constructor and is copied by referring to the info-table (Sec-
tion 4.2). Its scalar data (fixed portion) is copied using memcpy and its child objects (data constructor
fields) are pushed on the worklist for evacuation. Any untagged shortcut pointers stored in this
constructor have to re-created to point to the new addresses of the relocated child objects. The cre-
ation of new shortcut pointers is deferred until its corresponding child object begins evacuation,
since the child’s new address cannot be known in advance. In the implementation, the worklist
stores a pair (Type, Option<*mut i8>), where the (Option<*mut i8>) corresponds to the address of
the potential® shortcut pointer that needs to be created when this object begins evacuation.

After all GC roots have been evacuated, any old-generation regions that are dead as per the deferred
reference counting mechanism are freed. The minor collection is now considered complete and the mutator
resumes execution. We discuss the major collection strategy in Section 4.1.5.

Evacuation order of GC roots. Like other tracing collectors, the layout and locality of the old-

generation heap produced by our collector is sensitive to the order in which roots are processed [2]. But

“Not all data constructors store shortcut pointers.

69

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

Root Set Young Gen. Old Gen.

oldest/bottom

newest/top

(a) Evacuating GC roots from oldest to newest would create a compact old-generation object with no indirection
pointers.

Root Set Young Gen. old Gen.

oldest/bottom

newest/top

(B) Evacuating GC roots from oldest to newest would create an old-generation object with unnecessary indirections.

FicUre 4.4. Figure (a) shows a young-generation object, and a root set representative of in-
order allocation workloads. Figure (b) shows the same young-generation object, but a root
set representative of reverse-order allocation workloads. These root sets have different

traversal orders which are efficient.

our collector is even more sensitive to this ordering. Certain traversal orders produce a compact heap
with no indirection pointers, while some others produce significantly pointer-heavy heaps. Consider the
young-generation and the root set in Figure 4.4a and Figure 4.4b. The young-generation object is identical
in both cases, but the order of GC roots corresponding to the child objects is different. In Figure 4.4a, the
oldest root corresponds to the parent object, and roots toward the top correspond to child objects deeper
in the graph. In Figure 4.4b, the roots are ordered in the opposite order. This ordering of roots in the root
set is a consequence of different workloads: in-order allocators like mkList tend to create root sets like
Figure 4.4a, while reverse-order allocators like reverse tend to create root sets like Figure 4.4b. If a col-
lection is triggered at this point, there is no fixed order of root set traversal (e.g. newest-to-oldest versus
oldest-to-newest) that would handle both examples efficiently®. For these list examples, an efficient traver-

sal starts evacuation with the head of the list, promoting the entire list into a single old-generation region

>We say that a traversal order is efficient if it produces compact heaps and introduces minimum fragmentation.

70

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

(Figure 4.4a). An inefficient traversal would evacuate the tail of the list first, and then subsequently evac-
uate earlier parts of the list which would be linked by (unnecessary) indirections to the already-evacuated
portions (Figure 4.4b). How can we reconcile different efficient traversal orders?

The key insight here is to pick an order that consistently evacuates upstream data earlier, irrespective of
the order of allocation. Specifically, we want a traversal order that (1) evacuates roots for the newer regions
before the older regions, and (2) within each region, evacuates roots that are towards the beginning of the
region before roots that are towards the end.

We get such an ordering as follows. First, we bump the allocation pointer of the young-generation
backwards. That is, the allocation pointer starts at the end of the young-generation (the high address), and
moves towards the start (the low address). Next, we sort the root set such that roots corresponding to
objects at lower addresses appear before those at higher addresses. This policy gives us both the desired
properties because objects towards the beginning of the region already occupy addresses lower than those
of objects towards the end, and the reversed bump allocation pointer puts newer regions at addresses lower
than those of older regions.

For a desirable post-collection heap, indirections should only be proportional to actual sharing in the

data. To quantify this notion more precisely, we define an optimal heap with minimum indirection count:

Definition 4.1.1: Minimal indirections post-collection
The minimum number of indirections post-collection includes: up to one per root, plus N — 1 indirections

for every object which has N > 1 references to it.

If a live object has only a single reference to it, then it must be placed in the same region as the object
from which it is reachable. The per-root indirections are there because the roots themselves represent
pointers into the heap data. Furthermore, we currently place these pointers in fresh regions only if the
object has not been copied already, otherwise, the root is directly updated to point to the object’s new ad-
dress. Our post-collection heaps always achieve minimal, sharing-only indirections, as in Definition 4.1.1.
Of course, this compactness comes at the cost of sorting the roots. In practice, root sets are small enough
that the time is worth it for this optimization. Also, the root set is bounded by the program stack size. If
we wanted to further bound sorting time to a constant, we could use a partial sorting algorithm to limit
sorting time, trading it off against having fewer of the young-generation indirection-edges respected by

the order of the root-set traversal.

71

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

4.1.2. Growing partially-written objects. Certain objects encountered by GC-Gibbon’s copying
collector might be only partially written. For example, the mutator could be in the middle of allocating a
tree structure when it triggers a collection, which would cause the young-generation to contain a region
with a tree node having a left field but no right field (yet), as shown in Figure 4.5a. When such a tree
node is promoted to the old-generation, the collector must stop copying after the left field, otherwise it will
keep reading uninitialized data. Thus the collector must be able to detect the ends of such partially-written
objects. Furthermore, once the minor collection is complete the collector must decide where to grow this
object, that is, where to restart construction of the remainder of the object (the right field)—in the young
or in the old-generation.

We use a region’s allocation cursor to detect partially-written objects. LoCal always allocates objects
in a region in order, and, the allocation cursor is the address where the next object would be written. As a
corollary, the allocation cursor is the frontier of all data written within the region, or in other words, the
first byte address in a region that is uninitialized. This is the address where we want the copying to stop.

Before beginning copying, the collector writes a special reserved tag at all live allocation cursors,
effectively cauterizing the regions to mark the end of initialized data, as shown in Figure 4.5b. The copying
routine described in Section 4.1.1 stops copying upon reaching this tag, so as to not read any uninitialized
data. To support this, the mutator spills all live writeable locations to a separate shadow-stack before
starting a collection, and restores their updated addresses after the collection is complete. Regions that
contain a fully constructed value do not have an allocation cursor, as they do not have any writeable
locations in them. Correspondingly, such regions do not undergo cauterization and the live objects within
them are promoted in the standard way.

The design choice of where to restart construction of the remainder of partially-written values is a
tradeoff between (1) requiring a write barrier for new indirection pointers written into the old-generation,
and (2) sacrificing the benefits of pretunuring large and growing regions into the old-generation.

4.1.2.1. Design choice 1: Restarting construction in the young-generation. We would allocate
one young-generation chunk for each partially-written object that was promoted to the old-generation,
and, to continue its construction, update its allocation cursor to point to the beginning of the new chunk.
Next, we would use an end-of-chunk pointer to link the end of the promoted object to the beginning of
this fresh young-generation chunk. These end-of-chunk pointers (pointing from old-generation to young-
generation) would serve as a remembered set of roots for the subsequent minor collection. Crucially, how-

ever, all writes would now always happen in the young-generation. As a result, and since LoCal is a pure

72

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

Root Set Young Gen. Root Set Young Gen.
Pointer Pointer

Allocation cursor Allocation cursor

shadow-stack shadow-stack
(a) A partially-written tree node in the young- (B) The tree node from Figure 4.5a cauterized by writing
generation; N is short for Node and L is short for Leaf. the reserved tag CT. A pointer to the allocation shadow-

stack frame is saved here so that the allocation pointer

can be restored after collection.

FIGURE 4.5. Partially-written values in the young-generation.

language, this remembered set would remain constant until the subsequent collection. Moreover, all new
indirection pointers would be young-to-old pointers, and could be created without a write barrier (for main-
taining a separate remembered set), making them fairly cheap to create. With this policy, we would use a
remembered set of end-of-chunk pointers that is updated once per collection, instead of a remembered set
of indirection pointers that is maintained by the mutator using a write barrier.

While this policy reduces the cost of indirection pointers, it precludes the collector from perform-
ing pretenuring, which requires that the mutator be able to allocate certain long-lived objects directly in
the old-generation. This would have a significant impact on the performance of programs that allocate
large values, often using a small number of regions. Such programs would exhaust the nursery frequently
and trigger a collection. Moreover, programs that have a large number of regions under construction si-
multaneously could cause an exceptional situation where after the minor collection, a large portion of
the nursery is populated by these new chunks for older promoted values, also increasing the number of
collections (unless the nursery is allowed to grow).

4.1.2.2. Design choice 2: Restarting construction in the old-generation. In GC-Gibbon we use
the dual of the previous choice, namely to continue the construction of partially-written objects in the old-
generation. After an object is promoted, its allocation cursor is updated to point to the frontier of its old-
generation chunk, and no new chunks are created in the nursery. As discussed above, the choice to allow
allocations directly in the old-generation has two consequences: the collector can perform pretenuring, but

pointer creation needs to be protected by a write barrier since the remembered set of indirections pointing

73

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

from old to young-generation can dynamically grow®. While such a write barrier is expensive, we already
amortize its overhead by minimizing the number of indirection pointers. Also, this write barrier is no worse
than what already exists in Gibbon, which has to potentially update reference counts and outsets when
creating indirection pointers. On the plus side, pretenuring is vastly beneficial for programs that allocate
large data structures—exactly the kind of bulk-data-processing programs which are Gibbon’s speciality.
We adopt the following pretenuring policy: the first chunk of every region is allocated in the young
generation, but all subsequent chunks directly start in the old-generation. Thus, after a small prefix, the
remainder of a large structure would be written only once and never copied by GC, similar to Gibbon. The
reasoning behind this policy is that the lifetime of a structure is at least the time required to construct it,
which could be quite large for large structures. Analogous to the accepted wisdom that old objects tend to
live even longer, large regions are more likely to grow even bigger. Also, in our experience typical Gibbon
programs tend to not require many indirection pointers in their representation, thus we try to optimize

the more common case. This design choice has a huge impact on benchmarks evaluated in Table 4.3.

4.1.3. Copying object graphs while maintaining sharing. Of course, an object can have more
than one inbound pointer, and thus tracing GCs must maintain sharing as they relocate data—for example,
a subtree might be shared by two separate tree values. The rootset itself can contain stack variables with
multiple pointers into different parts of the same object, as is the case when the mutator recurs through
multiple levels of a tree (illustrated in Figure 4.4a). Thus, if we failed to detect sharing while copying live
data, all the local variables on the stack could end up with their own completely separate copy of the data’!

Alas, there are several challenges to maintaining sharing given a dense, mostly-serialized heap. First,
there is insufficient space for forwarding pointers inside many objects’ layouts. Second, when the collector
is mid-way through copying an object, and finds a sub-portion of it has already been copied, it needs a
shortcut pointer to “skip over” the already-copied portion and resume copying after it. Shortcut-pointers
created by the mutator cannot be relied upon since they are added on a per-data-constructor, per-field basis.
The simplest solution to both these challenges is to maintain two side-metadata tables during collection:
(1) to store all forwarding information, i.e. a table that maps (start,end) intervals in the young-generation

to their corresponding addresses in the old-generation, and (2) another table to store shortcut pointers

The remembered set can never shrink, because pointers in the old generation cannot be deleted by the mutator as LoCal is

a pure language.
7Strategies that introduce a bounded amount of data duplication, however, could still be considered as reasonable

optimizations.

74

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

Young Gen.

Obj1 Obj2
{N‘4 E‘Ind‘ {N‘G‘E‘E}
byte addrs: 0 /1_} 10 11 19 @%‘01 109 110 111
Inbound indirection pointer 1 Inbound indirection pointer 2

(a) A young-generation heap with two objects, namely Obj1 and 0bj2. 0Obj1 has one inbound indirection pointer

from an object not pictured here. 0bj2 has two inbound indirection pointers: from 0bj1 and from another object not

pictured here. N is short for Node and E is short for Empty (a binary search tree constructor).

Young Gen.

Flel [n]6|B|E]

byte addrs: 0 1 o 11 19 00 101 109 110 111 1000 1001 1009 1010 1011
—
1 byte 1 byte

Inbound indirection pointer 1 Inbound indirection pointer 2

(B) The young-generation heap from (A) after Obj1 has been evacuated. The collector has been able to add two

forwarding pointers, but one object (E) has been burned without a forwarding pointer.

FIGURE 4.6. An in-progress evacuation that illustrates how objects are forwarded and

burned.

(skip-over addresses). Unfortunately, using these tables naively is prohibitively expensive and makes the
collector several times slower. Instead, we explore an approach that stores this metadata in the copied
portion of objects where possible and only uses side-metadata tables as a fallback (the slow path), as we
explain next.

4.1.3.1. Forwarding. The forwarding strategy we use follows the principle of: (1) precisely mark-
ing each byte that is copied, while (2) opportunistically including forwarding pointers anywhere in the
bytestream where there is room: including wherever indirection pointers exist, and any data-constructors
with more than a pointer-sized quantity of scalar data. We say that data marked in this manner is either
forwarded, by writing a forwarding pointer into its payload, or, when too small for forwarding, burned,
with each status corresponding to another reserved tag value. We denote these tags B and F. A “B” behaves
like a single byte object, whereas a 9 byte “F addr” object consists of the forwarded tag followed by the new
address of the object which previously lived at the same byte location as the forwarded tag in the nursery.

Before proceeding further, let us recap, and define some terminology:

e An evacuation copies a complete value from the nursery to the old-generation.

75

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

e In doing so, it marks all copied objects (with burned or forwarded tags).

e Only the first chunk within each region can reside within the nursery.

e An evacuation marks an interval of bytes within a nursery chunk. Intervals starting at location
zero are treated differently®.

e An interval consists of one or more indivisible spans, which are sequences of packed data that are
free of indirections before collection begins. These spans are relocated to layout-equivalent spans

of the same size in the old-generation.

When the collector needs to compute the forwarded address of a given tag, it either reads it directly (if
the object was forwardable), or it reads a burned tag and scans to the right looking for a forwarding entry
within the same span. Once such an entry is found, the address of the original tag byte in question can also
be computed via subtraction—as its location relative to the forwarded object in the young-generation and
old-generation will be conserved. This conservation holds because: (1) inlining of data due to the presence
of indirection pointers is the only reason why an object could have different sizes in the young-generation
and the old-generation, and (2) each indirection itself has enough space to store a forwarding pointer after
being evacuated. Thus, the forwarding address of any object occurring in the span of bytes serialized before
an indirection pointer can be computed in a straightforward manner: we use the forwarding pointer that
will be written in place of the old indirection.

Consider a scenario where the young-generation heap is as illustrated in Figure 4.6b and the collector
follows “inbound indirection pointer1” and reaches the burned tag in obj1 at byte-address 9. It will now
scan to the right and immediately discover a forwarding pointer at byte-address 10. This forwarding pointer
points to the old-generation byte-address 1@1e. Thus, the collector will compute the forwarded address of
the object at byte-address 9 as: 1010 - (10 - 9) = 1009.

Our goal in designing the sharing-preservation aspect of our collection algorithm is thus to bound
the amount of scanning time necessary to resolve a forwarded address for any tag residing in the young-
generation before collection. Nevertheless, for completeness we need to also introduce a global table as
the place of last resort to store forwarding information. The table maps (start,end) intervals in the young-
generation to their corresponding start locations in the old-generation. The collector may enter in the
middle of a burned interval, so the table needs to be an interval map allowing forwarding-address lookups

keyed on locations anywhere within the forwarded interval.

81f we increased the number of regions in a Gibbon program until every object had its own region, then they would all be

placed at location 0 and resemble object memory allocations in a traditional heap.

76

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

We fall back to the table when we fail to find forwarding information by scanning. We can fail by
hitting the end of the span, which we recognize based on encountering an already-burned tag of the next
span. The collector also exposes a max_scan parameter for the maximum number of burned bytes that
should be traversed in search of a forwarding pointer. By default this is set to the nursery chunk size.
After scanning this many bytes, we fall back to the global table to lookup forwarding information.

Symmetrically, with writing as with reading, after reaching the end of the span or burning max_scan
bytes, without successfully forwarding, we populate an entry in the table. Because the bound must
hold from any starting location, after successfully forwarding an object, we begin counting again, up to
max_scan. If we hit an indirection, it is itself a forwardable object. In this case, we also mark the object
downstream from it as start of a new span (in addition to resetting the max_scan counter).

4.1.3.2. Skipping-over. The worst-case scenario is pictured below: a tree value with shape only,
containing no scalars, but whose subtree was already copied and burned. This value consists exclusively

of small, non-forwardable objects.

vIvfel fefc]]

Even scanning to the end of this interval will fail to turn up a forwarding pointer. Fortunately, the size of
the problematic interval is bounded by the chunk size of the starting region (in the nursery). The reason
is that, otherwise, the interval would contain a chunk redirection pointer to another chunk, which itself
is forwardable. Unfortunately, the landlocked, evacuated value needs to not only have its new forwarding
address resolved (for writing an indirection in the old-generation), but the collector also needs to know
where the burned value ends in the from space, so that it can subsequently continue collection.

To this end, our algorithm, given in Figure 4.1, introduces a second table for storing skip-over addresses.
The table provides a fallback, requiring a slow path for evacuation, just like the table for forwarding point-
ers. Our collector creates a table entry only when it enters a region for the first time at a non-zero location’.
A zero-location tested at runtime with the zero_location? predicate, is simply the first location within each
region. The reason is that values which begin at location zero in a region never need to be skipped over
in this way. Either they are top-level values, or if they are referred to, it is via an indirection, which itself

is trivial to skip over. Furthermore, such location-zero values are always forwardable, because we leave

°In future work, static analysis may assist in ruling out sharing and lessening this obligation.

77

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

enough room in the footer of each region chunk to store a forwarding pointer. Conversely, when the col-
lector stumbles on a transition to burned data in the middle of a chunk, it immediately switches to the
slow-path, performing a table lookup.

To support skipping ahead, the table stores only the end of the entire burned interval, i.e. the end of the
value rooted in the first burned byte. This information is sufficient because the collector can only jump into
the middle of the burned interval by following an indirection there. In that case, forwarding information
is needed but skip-over information is not, because it is trivial to skip-over the value by skipping over
the indirection itself. Adjacent burned intervals are not ambiguous with a single interval, because they
correspond to two logical values, and as such are copied by separate evacuations resulting in separate
entries in the table. In Figure 4.6b, our collector would create an entry in the skip-over table for the object
at byte-address 109, since this object lives at a non-zero location and is burned by following an indirection
pointer. The collector will look up this entry in the table if it evacuates the object starting at byte-address
100.

In conclusion, this subsection introduced a sharing-preservation strategy, which, for completeness,
includes separate tables for slow-path lookups of forwarding and skip-ahead information. We expect that
programs take these slow paths rarely because: (1) heaps generally have a sufficient density of primitive
data (ints, floats, strings) or indirections such that there is a high density of forwardable objects, and (2)
skipping over already-evacuated values is necessary only when the nursery contains sharing. The latter
case generally happens in programs that perform fine-grained allocations of small regions, with a high

percentage of objects occupying location zero of their respective regions.

4.1.4. Write barrier. As mentioned in Section 4.1.2.2, because we allow old-to-young pointers, we
need a write barrier on indirections written to the old generation. Thus on every write of an indirection,
we test the target address to see if it’s in the nursery, and if not we add it to a remembered set. Our write
barrier currently compares the pointer against a (start, end) range of addresses for the nursery. Further
optimizations to the “is in nursery?” predicate are possible in the future’.

One important optimization we do perform is to prevent redundant chains of indirections, short cir-
cuiting them, in the write-barrier. We perform an additional load to peek at the tag of the target to which
the new indirection points, and if it is an indirection, we keep following it until we find a non-indirection

10For example, we could allocate the nursery in a fixed portion of the virtual address space, so that a test on the pointer is

sufficient for the is-in-nursery test, without any additional loads for (dynamic) nursery bounds.

78

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

tag as the target. As with other aspects of the design, this leverages the immutability of our heap to

maintain the invariant.

4.1.5. Major collection. A region in the old-generation can be freed either by having its reference
count drop to zero, or by a backup major tracing collection. We discuss each strategy in the following.

4.1.5.1. Deferred reference counting. On the one hand, reference counting at the region-level is
extremely effective for large values, because a single reference count is shared by many objects—such
as an entire tree packed into a region. We thereby avoid tracing these large values, achieving the same
benefits as GHC’s Compact Normal Forms [68]. Young objects, on the other hand, are more dispersed,
occupying more distinct regions-per-megabyte—for example when a linked list is allocated with each node
in a different region. As always, the generational approach allows us to take advantage of the difference in
expected lifetime between young and old objects. But there is a further advantage in the mostly-serialized
setting: a copying minor collection also coalesces objects into fewer regions in the old-generation, placing
those objects in order to take full advantage of the serialized representation, eliminating pointers from the
representation rather than just moving and redirecting them.

4.1.5.2. Backup tracing collection. In the introduction, we described how grouping objects into
regions can increase their lifetime. One live object in a region can prevent its reclamation, wasting space
on other, dead objects inside the region. Further, because Gibbon’s reference counting is region-level,
keeping a region alive means keeping downstream regions alive, even if they are pointed to only by now-
dead objects within the region. It is because of these fragmented regions and overapproximated reference
counts that we need to include a backup collection strategy for the old-generation as well.

Our major collection uses the same copying strategy as minor collection—evacuating live objects into
in-order serialized sequences inside fresh, dense regions. It is triggered in the standard way, when the
old-generation size exceeds a threshold. What is unusual, however, is that the combination of region-
reference-counting in the old-generation, with the backup collector, means that the old-generation size
does not monotonically increase. It shrinks when reference counting deallocates regions. We perform
major collection in a stop-the-world fashion, collecting all regions into a small number of output regions
based on the number of roots.

Natural Incrementality. Because all the data in regions is immutable, it would be straightforward to
incrementalize the major collection, which we could address in future work. That is, given the roots for a

particular region, we can evacuate it, and compute an updated set of outbound pointers, either evacuating

79

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

them recursively, or using that winnowed outset to decrement the reference counts of downstream regions.
For example, if we stop evacuating after copying K bytes, the (reduced) outbound pointers keep fewer
downstream regions alive. Thus evacuating a region can free memory not just in that region, but other

regions that are released.

4.2. Implementation Details

We implement our memory management system in the open-source Gibbon compiler!’. Our imple-
mentation mainly changes Gibbon’s runtime system (with only a few additions to certain LoCal-to-LoCal
compiler passes). The region creation routine is updated to create a chunk in the young-generation using
bump pointer allocation. A collection is triggered when the young-generation becomes full. Our garbage
collector is implemented in the Rust programming language, primarily because of the memory safety guar-
antees it can provide, along with access to a rich collection of data structures in the standard library. The
Rust code is compiled as a dynamic system library (using crate-type =["cdylib"]) and then linked with
the GC-Gibbon-generated C code. This choice does have a side effect: we lose potential compile-time or
link-time optimization opportunities between the C and Rust code'?. We limit the interaction between our
C and Rust code to just one function call, garbage_collect, which reduces any potential slowdowns caused
due to missed optimizations.

Info-table. We use a statically allocated info-table to store the layout information required to evacuate
objects of different types. This table is populated by the program when it starts executing. For each user-
defined datatype in the Gibbon source program, the info-table has an entry of type DatatypeInfo given in
Figure 4.7. The main evacuation loop operates like an interpreter consuming a stream of byte-codes; when
the object being evacuated starts with a tag corresponding to a regular data constructor, (as opposed to a
reserved tag described earlier) it retrieves the necessary layout information from the info-table.

Pointer encoding. At various points during collection, the collector needs to know metadata informa-
tion of a region which houses an object that is the target of a pointer (indirection pointer or end-of-chunk
pointer). If writing an old-to-old indirection pointer, the target region’s reference count needs to change.
If promoting a chunk that ends with a link to a pretenured chunk, the target region’s set of chunks needs

11https:// github.com/iu-parfunc/gibbon/

125ince we use GCC to compile the generated C programs because it usually produces more efficient code than Clang in our
experience, especially for the switch-heavy tree traversal programs. Besides, getting meaningful link-time optimizations between

code compiled using Clang and Rust is not trivial.

80

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

type InfoTable = Vec<DatatypeInfo>;

enum DatatypeInfo {
Scalar (usize),

Packed(Vec<DataconInfo>),

struct DataconInfo {
scalar_bytes: usize, // Bytes before the first packed field.
num_shortcut: usize, // Number of shortcut pointer fields.

field_tys: Vec<u32>, // Field types of packed fields.

FiGURE 4.7. The representation of GC-Gibbon’s info-table in the Rust runtime system.

to be updated. This metadata information can be accessed via the footer of the target chunk. To enable
access to the footer, we use a 64 bit pointer to store both: (1) the address of the target object, and (2) the
offset from there to the target chunk’s footer. The 16 high-order reserved bits are used to store the offset
information. As a consequence, the maximum chunk size that can be allocated is bound at 65K bytes (21°).

Reordering tag allocations. Even though allocations in LoCal happen in order, its formalism requires
that a data constructor tag be written after all its fields are. That’s because writing the tag indicates that a
particular LoCal value is fully written, and the type-system ensures certain invariants are maintained by
the fields. This, however, creates a problem for our collector which might need to copy a value while it is
still under-construction(Section 4.1.2). Without the tag present at the beginning of an object, the collector
cannot infer what kind of an object it is copying. We bypass this by reordering the writes such that a data
constructor tag always gets written before any of its fields. Not only does this help the collector, it also
makes the mutator slightly more efficient.

Bounding region size. A performance anti-pattern with previous versions of Gibbon was to allocate
a sizeable region of the default size, typically at least 1K, and then write only a single constant-sized object
to it, such as one cell of a linked list. This wastes a lot of memory, and in GC-Gibbon, can also cause
many more collections to occur. It is therefore profitable to identify certain regions with statically bounded

maximum size. We add such a static analysis on Gibbon’s LoCal intermediate language. When the compiler

81

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

backend generates code for letregion constructs, it overrides the default size with the static bound if it is
smaller. Implementing this requires analyzing all the locations that allocate to a particular region, and then
inferring the sizes of objects written to these locations. The size of primitive types such as ints and floats
is known a priori. Expressions that allocate a variably-sized serialized value (for example, using recursion)

are inferred to have an unbounded size.

4.3. Evaluation

In this section we evaluate our memory management system using a variety of benchmarks taken
from previous literature, and two additional benchmarks—reverse and treeupdate—that stress the worse-
case scenarios for our implementation. Besides prior Gibbon (referred to as Legacy-Gibbon in the rest of
this section), we compare the performance of our implementation to GHC'?, which is especially optimized
to run functional programs which allocate lots of small objects, and Java, which has a highly optimized and
mature garbage collector. For our experiments, we use a single-socket Intel E5-2699 18 core machine with
64GB of memory and running Ubuntu 18.04. We compile the C programs generated by our implementa-
tion using GCC 7.5.0 with all optimizations enabled (option -03). For comparing against Legacy-Gibbon,
we use its version 0.2 compiled from source. To ensure an apples-to-apples comparison, we port our
bounding-region-size optimization (Section 4.2) to Legacy-Gibbon. For GHC, we use GHC 9.0.2, with op-
tions -threaded -02. We use GHC’s default collector [39] and control the size of its young-generation with
the run-time option +RTS -A <SIZE> -RTS. For Java, we use OpenJDK 17.0.1 with its default G1 collector [21]
and control the size of its young-generation with the option -Xx:NewSize=<SI1ZE>. Each reported measure-
ment is the mean of 10 runs, where each run records the wall-clock time required to run a benchmark. For
Java, we do two additional runs to warm up the JVM but don’t count their run time when computing the
mean. We oberved low variance in all our measurements and therefore do not report it separately.

Benchmarks. We consider the following benchmarks for our evaluation. For GHC, we use strict
datatypes in benchmarks, which generally offers the same or better performance, but avoids performance
complications due to laziness. All programs use the same algorithms'* and datatypes, and are run with the
same inputs. For GHC and Legacy-Gibbon, we hold the size of the young-generation constant at 4M. For

Java, the young-generation starts with a size of 4M, but is allowed to grow if desired by the collector.

13https:/ /www.haskell.org/ghc/

14To workaround a stackoverflow error, we use for loops instead of recursion for the Java implementation of reverse and

treeUpdate.

82

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

e reverse: This is the standard accumulator style list-reverse program shown in Figure 2.7a; it
reverses a list containing 8M integers. The Java implementation is defined using a while loop
rather than a recursive function.

o treeUpdate: This is the complete version of the program given in Figure 2.8a. It starts with a
very small search tree and repeatedly inserts and deletes numbers in it. The numbers are chosen
from small range (0-512) to keep the size of the tree more or less constant, and the tree is updated
5M times. The Java implementation encodes the outer “update” loop as an actual while loop, but
insert and delete are defined using recursion in the standard way.

e coins: This benchmark is taken from GHC’s NoFib!> benchmark suite. It computes the number of
ways in which a certain amount of money can be paid by using the given set of coins. The input
set of coins and their quantities are [(250,55), (100,88), (25,88),(10,99), (5,122),(1,177)], and the
amount to be paid is 999.

e lcss: This benchmark computes the longest-common-substring using Hirschberg’s algorithm.
Our implementation is taken from GHC’s NoFib benchmark suite. We provide as input two strings
of length 3100 and 3000, respectively, such that the result has length 2100.

e power: This benchmark [42] computes 20 elements of the power series
(ts = 1 :+: ts"2), which is shown here assuming lazy evaluation. We use a slightly modified
implementation that is suitable for a strict language.

¢ buildKdTree and countCorr and allNearest: buildkDTree constructs a kd-tree [25] containing
1M 3-d points in the Plummer distribution. countCorr takes as input a kd-tree and counts the
number of correlated (within a distance of 100 units) points for all 1M 3-d points. allNearest
computes the nearest neighbors of all 1M 3-d points.

e barnesHut: Uses a quad tree to run an nbody simulation over 1M 2-d point-masses distributed
uniformly within a square.

e constFold: This benchmark is taken from [34] and implements constant folding for a language
that supports integer arithmetic. It is run on synthetic syntax-tree which is a balanced binary tree
of depth 26.

e evacSharedTree: This is a synthetic benchmark designed to stress the sharing-preservation as-
pect of our collection algorithm. It allocates a large balanced binary tree with maximum sharing

and releases it almost immediately, and then triggers a major collection. Only the time required for

Bhttps://gitlab.haskell.org/ghc/nofib

83

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

TABLE 4.1. Run times in seconds of benchmarks run with different GC configurations (ex-

plained in Section 4.3).

Benchmark Default NoBurn NoCompact Simple- NoBurn NoCompact

Barrier +SB +SB

reverse 0.49 0.43 11.8 0.49 0.44 11.9

treeUpdate 0.77 0.75 0.88 2.30 1.20 12.1

coins 4.34 4.32 4.31 10.45 10.3 10.4

Icss 0.51 0.53 0.54 0.52 0.52 0.53

power 1.40 1.34 1.36 1.38 1.40 1.44
evacSharedTree 2.53e-05 2.44 1.33e-04 3.25e-05 243 1.31e-04

the major collection is measured, to demonstrate the performance impact of sharing-preservation.
Maximum sharing in the allocated tree is achieved as follows: for each interior node at height h, a
single tree with height h-1 is constructed and is used as the left and the right subtree of this node.
In GC-Gibbon and Legacy-Gibbon, this tree with height h-1 will be allocated in a separate region
and two indirections will be written to construct the node with height h. This benchmark is run

on tree of height 25.

These benchmarks are roughly divided into two sets: (1) those that perform many out-of-order and small-
allocations (reverse, treeUpdate, coins, lcss, power), where the mostly-serialized approach is weakest, and (2)
those that allocate or traverse a large data structure (buildKdTree, countCorr, allNearest, barnesHut, constFold),
where the mostly-serialized approach shines.

Evaluating GC design choices. To evaluate the effects of the design choices we made, we run the

benchmarks that stress the collector in six different modes, each of which toggles a specific choice:

e Default: The default configuration follows the design described in Section 4.1, with all optimiza-
tions enabled.

e NoBurn: In this mode we disable the forwarding pointer mechanism described in Section 4.1.3.
Thus, every shared value is copied multiple times. A benefit of this is that writing forwarding

pointers and burning data, and maintaing side-metadata tables is no longer required.

84

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

e NoCompact: In this mode we disable compaction (pointer elimination). For each indirection
pointer encountered during evacuation, if the target object is not already copied, it is put into a
fresh region and a new indirection pointing to this fresh region is created.

e SimpleBarrier: In this mode we disable the optimization that eliminates redundant chains of in-
directions (Section 4.1.4). This makes the write-barrier more efficient by reducing the number of
memory loads it performs, but makes the collection more expensive because of the overheads as-
sociated with evacuating indirection-heavy heaps (due to forwarding, maintaining side-metadata
tables, etc.).

e NoBurn+SB: This mode is a combination of NoBurn and SimpleBarrier. We disable forwarding
pointers and the indirection-chain-elimination optimization.

e NoCompact+SB: This mode is a combination of NoCompact and SimpleBarrier. We disable com-

paction (pointer elimination) and the indirection-chain-elimination optimization.

All of these modes (except SimpleBarrier) are configuration flags provided to the collector. SimpleBarrier
requires recompiling the mutator since the write-barrier is inlined into the mutator at compile time.

The results are given in Table 4.1. The choices made by our collector (column Default) perform
well across all benchmarks. For all other modes, there is at least one benchmark which performs poorly.
evacSharedTree has maximum sharing and is therefore a pathological worst-case for the NoBurn mode, which
disables sharing-preservation during copying. In this case the collector copies an exponential amount of
data—335MB versus 14KB in Default mode! Even though this is a worst-case scenario, it’s quite easy to run
into this sort of copying behavior with sharing disabled in the collector. With respect to NoCompact mode,
reverse is 24X times slower in this configuration since it has the highest number of indirections among
these benchmarks—8M, one for each cons-cell. The effectiveness of the indirection-chain-eliminating
write-barrier is demonstrated by treeuUpdate and coins, both of which create long indirection chains and
are 2-3X slower in this mode. The performance of treeUpdate in NoBurn+SB mode is peculiar. On one hand,
the collector handles a large number of indirections, but because sharing is disabled, it saves time by not
having to maintain side-metadata tables. For instance, in SimpleBarrier mode the skip-over table contains
18K elements on average, versus 0 in NoBurn+SB. treeUpdate performs poorly (15X slower) in NoCompact+SB
mode due to the overhead of side-metadata management and excessive old-generation allocations.

Comparison to other systems. Tables 4.2 and 4.3 show the results of comparing performance of our
system to Legacy-Gibbon, GHC, and Java. For small and out-of-order allocation benchmarks (Table 4.2),

GC-Gibbon benefits from its fast bump-allocated young-generation, whereas Legacy-Gibbon shows the

85

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

TABLE 4.2. Run times of out-of-order and small-allocation benchmarks in seconds.

GC-Gibbon Legacy-Gibbon GHC Java
Benchmark Tgcgib Toldgib Toldgib/ Tgcgib Tghc Tghc/ Tgcgib 7}ava]}ava/ Tgcgib
reverse 0.49 1.46 2.98 0.42 0.86 0.53 1.08
treeUpdate 0.77 4.17 5.41 0.37 0.48 0.56 0.73
coins 4.34 35.5 8.18 1.21 0.28 3.63 0.84
Iess 0.51 0.30 0.59 0.45 0.88 0.72 1.41
power 1.40 8.07 5.76 0.28 0.20 2.36 1.68
geomean - - 3.39% - 0.46X - 1.09%

TaBLE 4.3. Run times of in-order allocation and bulk-traversal benchmarks in seconds.

GC-Gibbon Legacy-Gibbon GHC Java
Benchmark Tgcgib Toldgib Toldgib/ Tgcgib Tghc Tghc/ Tgcgib Tjava Eava/ Tgcgib

buildKdTree 2.67 2.53 0.95 7.78 291 4.48 1.68
countCorr 1.77 1.77 1.00 3.00 1.7 4.47 2.52
allNearest 0.71 0.80 1.13 1.46 2.06 1.00 1.41
barnesHut 3.54 3.40 0.96 5.83 1.65 2.40 0.68
constFold 1.38 1.50 1.09 4.12 2.98 2.56 1.85
geomean - - 1.02x - 2.19% - 1.5%x

overheads of malloc-based region allocations. In the case of reverse, both Gibbon versions need to allo-
cate a new region per input element, thus, 8M regions are allocated in this instance. But despite this very
high rate region allocation, GC-Gibbon is 7% faster than Java and only 14% slower than GHC. The lcss
benchmark is surprisingly fast with Legacy-Gibbon. According to our initial observations, lcss’ alloca-
tion pattern seems to naturally have a stack-like behavior and thus benefits from Legacy-Gibbon’s region
based memory management. While we have achieved significant performance improvements compared
to Legacy-Gibbon, some benchmarks do not perform as well as we might hope. Without the years of

optimizations in these competing systems, since our collector is new there is much room improvement.

86

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

GC-Gibbon —a— Legacy-Gibbon —m— GHC —e— Java —e—

Run time in seconds
o o o o e
5 5 R > @ kN &
Run time in seconds
N w s e N ® ©

——— ¢
M M 6M 8| 2M M 6M 8V 10M

Length of input list Update loop iterations

(A) reverse (B) treeUpdate
100 100 1 /
Eﬁ Em / _’8; /
@ S @
10] / / 2
g 2 2
S S S
S 3 o
& b1 ./’/:?: / &o.1
< c <
o o o
: / s / £
c 0.1 <
5 5 5
x 4 x
04dgg 699 799 899 999 005 19 0 21 22 00T 2 3 4

Amount to be paid Length of power series Input size
(c) coins (D) power () Lcss

FIGURE 4.8. Run times of benchmarks using inputs of various sizes, the young-generation
size is held constant at 4M. The red line marks the input used for measurements reported

in Table 4.2.

Legacy-Gibbon has a home-turf advantage on the in-order allocation and bulk-traversal benchmarks
(Table 4.3). As the results show, GC-Gibbon does not degrade their performance. The pretenuring op-
timization described in Section 4.1.2 is key to this. The slowdowns observed here are primarily because
GC-Gibbon’s pointer encoding mechanism, which puts an upper bound on the largest chunk that it can
allocate, namely 65K, unlike Legacy-Gibbon which sets this upper bound to 1GB. Both GC-Gibbon and
Legacy-Gibbon, however, outperforms GHC and Java on these benchmarks. Java performs exceptionally
well on barnesHut.

For small allocations, our system is 3.79X%, 0.46%, and 1.09X geomean faster than Legacy-Gibbon, GHC,
and Java, respectively. For bulk tree-traversals, our geomean speedup is 1.02Xx, 2.19% and 1.5X. Overall,
these results show that GC-Gibbon offers significant performance improvements compared to Legacy-
Gibbon on small and out-of-order allocation benchmarks, without degrading the performance on bulk-
traversal and allocation benchmarks. Legacy-Gibbon is prohibitively slow on certain workloads, thereby
discounting its use entirely if any part of a big application has an allocation pattern like coins, power or

87

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

GC-Gibbon —a— GHC —e—

0.55 3,

o e

g ‘\‘\6\3\,_6\9_4
5
g 0.4

7}
.£0.35
@

N
2

N

Eo3

-

Run time in seconds
I
»

c
F0.25

o
@

0.1
FEFFTITRTFS FEFFFTITIFP
Nursery size Nursery size
(A) reverse (B) treeUpdate

o
o

-
=

IS
o g

W

Run time in seconds
I

Run time in seconds

N
RS N N

-

B v gm0

o

—o—o-

SISO NI

PGS DN S S S
Nursery size

B

S RO R
CaROIC S PN E S
Nursery size

(c) power (D) coins

FIGURE 4.9. Run times of benchmarks using young-generations of various sizes. The red

line marks the nursery size used for measurements reported in Table 4.2, 4M.

treeUpdate as an example. For these benchmarks, GHC is 29x%, 28x and 11X faster than Legacy-Gibbon,
respectively. Overall, GC-Gibbon shows that general-purpose language runtimes powered by (mostly)
serialized data representations can support efficient tree traversals, as in Legacy-Gibbon, and perform well
in the setting of general-purpose functional programming, with a comprehensive solution for garbage
collection.

Parameter sweeps. In this section we discuss the results of three parameter sweeps for small out-
of-order allocation benchmarks that stress the collector. Figure 4.8 shows the run times of benchmarks
using inputs of various sizes, and the young-generation size is held constant at 4M. All the variants have
similar behavior, with Legacy-Gibbon being the slowest in most cases. Figure 4.9 shows the run times
of benchmarks using different young-generation sizes. This shows the expected tradeoff between space
and time; the wall-clock time gets better as the young-generation gets bigger, due to fewer collections.
Figure 4.10 shows the run times of benchmarks using different initial chunk sizes for GC-Gibbon. Using

bigger initial chunks, and therefore growing the overall region at a faster rate, causes more collections

88

4. MEMORY MANAGEMENT FOR MOSTLY-SERIALIZED HEAPS

GC-Gibbon (default) —a— GC-Gibbon (region size not inferred) —w—

./"’_’\‘\—‘//

,_.
.
]
3

Ny
S

Run time in seconds (log)
Run time in seconds (log)

B R R T T T T T D R TR T TR R T
First chunk size First chunk size

(A) reverse (B) coins

-

S
e
S

N

,///

2 1k 2k a4k 8k 16k 33K B R P R TR PR PR TR TS
First chunk size

Run time in seconds (log)
Run time in seconds (log)

e
&
a

First chunk size

(c) power (D) treeUpdate

FIGURE 4.10. Run times of benchmarks using initial chunks of varying sizes. Our region
size inference analysis (Section 4.2) causes GC-Gibbon to allocate constant-sized regions
in the main workoad of reverse and coins, thus their run times are constant. We report the

measurements after disabling this optimization as “GC-Gibbon (region size not inferred)”.

to occur since the nursery fills up faster. It also leads to inefficient space usage since many of the larger

chunks will be mostly empty.

89

Accelerating Haskell tree-traversals: from Gibbon to GHC

Presently, Gibbon is a standalone whole-program compiler for a small, strict subset of Haskell. But this
is not how we envision using it in the long term. We would instead like Gibbon to be an accelerator that
can be used with GHC. That is, Gibbon and its serialized data representations could be used to optimize
some portion of a bigger application that is compiled and run using GHC. This approach has two primary

benefits:

e It would give Gibbon programmers access to the wider Haskell library ecosystem and many
Haskell features that Gibbon does not yet support in its front-end source language. This would
enable writing a wide variety of programs that are currently not possible.

o It would significantly lower the barrier to Gibbon’s adoption and make it a practical tool that

could be used in many different scenarios.

To accomplish this goal, we implemented a proof-of-concept library named gibbon-plugin that can be in-
cluded in a Haskell application in the standard way' and that can be used in a regular Haskell program
compiled with GHC. With gibbon-plugin, users can “mark” certain Haskell expressions to be compiled by
Gibbon, and most importantly, these Gibbon-compiled expressions can be interspersed and used in the
overall program easily.

gibbon-plugin uses GHC’s plugin mechanism to integrate Gibbon with GHC. A GHC plugin allows one
to edit GHC’s usual compilation pipeline. Among other things, it lets one inspect and modify a program
being compiled. gibbon-plugin defines a plugin that works as follows: (1) it walks over the Haskell module
being compiled and collects expressions that are marked to be compiled using Gibbon, (2) it then uses the
existing Gibbon compiler to generate a new versions of these expressions that will operate on serialized
representations, and (3) sets things up so that the broader Haskell program can use these new Gibbon-
compiled expressions. Programmers need to pass a compile time flag to GHC, -fplugin=GibbonPlugin, to use
this plugin. While this overall strategy is straightforward, there are several details to get right so that the

resulting system is easy to use and performs well:

1Using Haskell package managers like Cabal or Stack.

90

5. ACCELERATING HASKELL TREE-TRAVERSALS: FROM GIBBON TO GHC

e Gibbon is a whole-program compiler whereas GHC is not. How to bridge this gap?

We generate a whole program for each expression that is marked for Gibbon-compilation. Essen-
tially, we collect all functions transitively reachable from the marked expression, crossing module
and library boundaries if required, and compile this transitive closure as a “whole-program” using
Gibbon.

e gibbon-plugin’s operates on GHC’s intermediate language called Core [22], which is a variant of

System FC [58]. Can we translate Core programs into Gibbon’s frontend language?
We can translate most Core programs into Gibbon'’s frontend language. Certain Core expressions,
however, have no equivalent Gibbon counterpart—for example, coercions. Our implementation
aborts compilation upon encountering such an expression. We plan to find a graceful way to
handle this situation in the future.

e Atthe boundary between Haskell-compiled code and Gibbon-compiled code, we will need to con-

vert values between the Haskell representation and the Gibbon representation. How would this
work and can we accomplish this easily for values of new user-defined datatypes?
We essentially need to serialize and deserialize values to convert them to and from the Gibbon
representation. Our approach here is very similar to the existing binary? library. Similar to this
library, we can use GHC.Generics to automate this process for user-defined datatypes (keep pro-
grammers from writing boilerplate code), but our implementation doesn’t do this yet.

e How would memory management work in this setting? Can we teach GHC’s collector about se-
rialized values, or, do we have to keep Gibbon’s collector around and make the two collectors
cooperate?

Memory management is a crucial component for making this system complete, but our imple-
mentation doesn’t handle it yet. But we think that we’ll need to keep Gibbon’s collector around,
given the complexity of collecting serialized values as shown in Chapter 4, and devise a cooper-

ative collection strategy.
Next, there are some design choices to be made:

e At what granularity should programmers mark things for Gibbon-compilation: at the level of a
complete Haskell module or top-level expressions or any expression?

gibbon-plugin allows programmers can mark any expression for Gibbon-compilation.

%Binary serialisation for Haskell values using lazy ByteStrings: https://hackage.haskell.org/package/binary

91

5. ACCELERATING HASKELL TREE-TRAVERSALS: FROM GIBBON TO GHC

e Should we use the existing Gibbon backend that generates C code or should we develop a new
backend that can generate Core code? This question boils down to whether we want Gibbon
primitives such as “allocate a region”, “write a number”, “read a number” etc. to be implemented
in C or in Haskell.

We use Gibbon’s existing C backend. Our initial experiments showed that Gibbon primitives
implemented in Haskell are slower compared to C. Thus, we generate C code for each expression
marked for Gibbon-compilation, compile this C code to object code (.o0) using GCC, link this object
code with GHC compiled code, and use functions in this object code using Haskell’s Foreign

Function Interface (FFI).

5.1. Design and Implementation
In the remainder of this section, we describe gibbon-plugin’s components in turn.

5.1.1. API and performance evaluation. The API we designed for using gibbon-plugin in a Haskell
program is given in Figure 5.1. A value of type a when converted to use Gibbon’s serialized data represen-
tation has the type Packed a. The typeclass Packable provides functions that can convert a value from the
Haskell representation to the Gibbon representation (toPacked) and vice versa (fromPacked). Programmers
need to define instances of this typeclass for datatypes that cross the boundary between Haskell-compiled
code and Gibbon-compiled code. gibbon-plugin can help here by providing a Generic instance for Packable,
but it doesn’t do this yet. Next, liftPacked can be used in a program to mark expressions that should
be compiled using Gibbon. 1iftPacked takes an expression of type (a — b) and returns an expression of
type (Packed a — Packed b). Thus, it returns an optimized version of the expression which will operate on
serialized values.

A simple program that uses this API is given in Figure 5.3. Here we’re using Gibbon to optimize the
performance of the expression named buildsum which is defined to be (An — sumTree (buildTree n)). We
define fastbuildsum as (liftPacked buildsum). In this case, gibbon-plugin will essentially generate a new
version of the function buildsum, and correspondingly buildTree and sumTree as well, and then update the
definition of fastbuildsum to use this new version of buildsum via the C FFIL. We will explain how this works
next. Before that we present some preliminary performance evaluation results given in Figure 5.2.

Column “GHC” shows the run time of a benchmark compiled with GHC using its standard pointer-
based representation. Column “GHC+Gibbon” shows the run time of a benchmark compiled with GHC

and optimized using gibbon-plugin’s liftPacked. Column “Standalone Gibbon” shows the run time of a

92

5. ACCELERATING HASKELL TREE-TRAVERSALS: FROM GIBBON TO GHC

—— Packed (serialized) representation of the value of type 'a’.

data Packed a

—— A typeclass to convert values between the Haskell representation and the Gibbon representation.
class Packable a where
toPacked :: a — Packed a

fromPacked :: Packed a — a

—— Lift an expression to operate on packed representation.

liftPacked :: (a — b) — (Packed a — Packed b)

FIGURE 5.1. gibbon-plugin’s API to use Gibbon as an accelerator in a Haskell program.

Benchmark GHC GHC+Gibbon Standalone Gibbon

buildsum 1.27 0.85 0.71

FIGURE 5.2. Run time of benchmarks in seconds.

benchmark compiled with standalone Gibbon compiler. buildsum compiled using GHC+Gibbon is 1.5X

faster compared to the same program compiled using just GHC and has comparable run time to Standalone

Gibbon. While we evaluated gibbon-plugin using just one benchmark, it still shows the promise of this

approach. We plan to work on expanding the performance evaluation in the future.

5.1.2. Fetching the transitive closure of an expression. There is a mismatch between Gibbon’s

and GHC’s compilation methodology: Gibbon is a whole-program compiler, whereas GHC compiles one

module at a time. Thus, if the marked expression (the expression given as argument to liftPacked) uses

a function from a different module, Gibbon needs access to its definition but GHC does not. In GHC,

a function’s definition is available across modules only if it is inlineable—that is, if it is marked with an

INLINE or an INLINEABLE pragma or if GHC decides to inline it on its own. To work around this, we require

programmers to compile their application and all its dependencies using the flag -fexpose-all-unfoldings.

This can be accomplished by specifying the following in a cabal.project file:

package =*

ghc-options: -fexpose-all-unfoldings

93

5. ACCELERATING HASKELL TREE-TRAVERSALS: FROM GIBBON TO GHC

module BuildSum where

—— Import the Gibbon library.

import Gibbon (liftPacked, Packed)

data Tree = Leaf Int | Node Tree Tree

buildTree :: Int — Tree

buildTree @ = Leaf 1

buildTree n = Node (buildTree (n-1)) (buildTree (n-1))

sumTree :: Tree — Int

sumTree (Leaf n) =n

sumTree (Node 1 r) = (sumTree 1) + (sumTree r)
buildsum :: Int — Int

buildsum n = sumTree (buildTree n)

fastbuildsum :: Packed Int — Packed Int

fastbuildsum = liftPacked buildsum

main = do
timel <« measureRunTime buildsum 25
time2 <« measureRunTime fastbuildsum (toPacked 25)

print (timel, time2)

F1GUre 5.3. A simple Haskell program that uses Gibbon as an accelerator via 1iftPacked.

This ensures that all function definitions are accessible across module and library boundaries. There is one
caveat. This flag does not apply to GHC’s standard library, base, because it’ll essentially require recompiling
base which is not straightforward. Because of this limitation, if a marked expression uses a function from
base that is not inlineable, our current implementation will fail to process it. In the future, we can provide

a new version of base that is compiled with the required flag.

94

5. ACCELERATING HASKELL TREE-TRAVERSALS: FROM GIBBON TO GHC

To satisfy Gibbon’s whole-program constraint, we collect all functions transitively reachable from the
marked expression, crossing module and library boundaries if required, and compile this transitive closure
as a “whole-program” using Gibbon. Collecting the transitive closure of an expression can be accomplished

by using the usual GHC API (functions from the ghc library) that is available for use in a GHC plugin.

5.1.3. Translating Core programs to Gibbon’s frontend language. Gibbon’s frontend language,
L0, is a pure higher-order functional language with support for parametric polymorphism, algebraic data
types, and pattern matching. It is very similar to Core except the following. Core has both recursive and
non-recursive let bindings, whereas L0 only has non-recursive let bindings. Next, Core and its pattern
matching implementation support a default wildcard pattern that matches any value, but L0 does not have
this feature. These differences can be overcome by various program transformations.

Some differences, however, between Core and L0 are incompatible. Haskell, and therefore Core, has
a much more advanced type system than L0 and some of these type system features also bleed into the
expression language. For example, Core has some expressions that L0 has no match for, such as type ap-
plications, casts, and coercions. If gibbon-plugin encounters any of these expressions, it aborts compilation
all together. In the future, we plan to find a graceful way to handle these.

While this is clearly a limitation of gibbon-plugin, it might not be a major roadblock to its adoption in
practice. In our experience, high performance Haskell code often does not use advanced type system fea-
tures and this is the kind of code that Gibbon will likely be used to optimize. Moreover, since programmers
can mark expressions using liftPacked in a piecemeal fashion, gibbon-plugin’s limitations will only apply
to a (possibly small) portion of the overall Haskell application. The other portion of the application (which

is not reachable via the marked expression) is free to use any and all Haskell features that are required.

5.1.4. Tying everything together using FFI. For the program given in Figure 5.3, gibbon-plugin
compiles buildsum, buildTree, and sumTree using Gibbon, specifically it’s C backend. As a result, we get an
object file (.0) which exports the following functions:

$ nm buildsum.o
c_buildTree

c_sumTree

c_buildsum

These functions operate on serialized representations of values, namely a serialized tree in this case. To use

these functions in the Haskell program, gibbon-plugin will generate Core code equivalent to the following

95

5. ACCELERATING HASKELL TREE-TRAVERSALS: FROM GIBBON TO GHC

Haskell code:

foreign import ccall unsafe "c_buildsum"

c_fastbuildsum :: CInt — CInt

fastbuildsum :: Int — Int

fastbuildsum = fromPacked . c_fastbuildsum . toPacked

First, it has added an FFI binding for the c_buildsum function. The type of the function is cInt — CInt since
CcInt is the Haskell type representing the C int type. Second, the definition of fastbuildsum has been updated
to use this new FFI binding. This is a fairly mechanical translation, the only interesting part here is the use
of fromPacked and toPacked. Any types that the cross the boundary between the Haskell-compiled code and
Gibbon-compiled code have to be encoded and decoded into an appropriate representation.

Converting values between representations will usually be slow (except for scalars such as numbers)
and should be avoided as much as possible. It’s more efficient to use 1iftPacked to lift a big computation,
rather than lifting small pieces of work. In the latter case, the overhead of converting values between
representations might outweigh the benefits of using serialized representations. Much like parallelism,
the granularity of liftPacked must be controlled. Also, our current implementation doesn’t offer a way
for the Gibbon-compiled code to call back into Haskell-compiled code, the FFI bindings that are generated

only go one way. This is something we plan to investigate in the future.

5.2. Future Work

We have only taken the first step towards developing an efficient way of using Gibbon as an accelerator
in a Haskell program. There is ample opportunity for further investigation in this area. In particular, the

following parts of gibbon-plugin could be significantly improved:

e We need to provide an easy way to derive Packable for user-defined datatypes without having
to write a lot of boilerplate code. This is something that can be accomplished with the help of
GHC.Generics and we plan to work on it.

e Memory management isn’t handled in the current implementation at all. This is important for it
to be a complete solution.

e There’s much work to be done to make the plugin more robust, the current implementation is still

a proof-of-concept.

96

Related Work

The most closely related work to this dissertation is, of course, Vollmer et al’s Gibbon compiler [66]
and LoCal [65], which was summarized in Chapter 2. As discussed there, Vollmer et al’s treatment only
provided sequential semantics and a simple reference counting based memory management system which
is only suitable for processing bulk tree-like data. First, we extend those semantics to incorporate paral-
lelism and present Parallel Gibbon, an implementation of the new parallel semantics whose performance
exceeds the performance of the best existing parallel functional compilers. Second, we present GC-Gibbon
that uses a much more sohisticated memory management scheme based on a generational garbage col-
lector, which can handle a variety of workloads efficiently. It retains Gibbon’s strong performance on
tree-traversals where the serialized data approach is most effective and also achieves reasonable perfor-
mance on out-of-order small allocations where the approach is weakest, more closely resembling mature
compilers and runtime systems that have been heavily optimized for such programs, using traditional
memory representations. In the following, we outline other prior research on serialized data structures,

parallelism, and garbage collection, and how Parallel Gibbon and GC-Gibbon relate to them.

6.1. Data Processing and Layout Control

Earlier precursors to Gibbon include [47], which observed the relationship between an (ordered) exten-
sion of linear type theory, and the ability to stipulate data layout. But this work considered only fixed-sized
types, not recursive types of unbounded size. It inspired later work, [33], which made the connection be-
tween a type system that could enforce data is consumed in left-to-right order, and the ability to convert
tree-traversal programs into stream-processing programs (which is what Gibbon does). Gibbon is struc-
tured differently, taking unannotated programs as input and having to accept any program irrespective
of data access order (instead changing the control flow and data representation both as free variables to

create an efficient combination).

97

6. RELATED WORK

6.2. Serialized Data and Parallelism

Parallel Gibbon is related to several HPC approaches to serializing recursive trees into flat buffers for
efficient traversal [26, 44, 38]. Notably, these approaches must maintain the ability to access the serial-
ized trees in parallel, despite the elimination of pointers internal to the data structure, or risk sacrificing
their performance goals. The key distinction that makes enabling parallelism in the HPC setting “easier”
than in our setting is that these approaches are application-specific. The serialized layouts are tuned for
trees whose structure and size are known prior to serialization, and the applications that consume these
trees are specially-written to deal with the application-specific serialization strategies. Hence, offsets are
either manually included in the necessary locations, or are not necessary as tree sizes can be inferred from
application-specific information.

Work on more general approaches for packing recursive structures into buffers includes Cap’N Proto
[64] and FlatBuffers [27], which attempt to unify on-disk and in-memory representations of data struc-
tures, and Compact Normal Form (CNF) [68]. Cap’N Proto, is designed to eliminate encoding/decoding by
standardizing on a new binary format for use in memory as well on disk/network. Compact Normal Forms
(CNF) is a feature provided by the Glasgow Haskell Compiler since version 8.2. The idea is that any purely
functional value, once fully evaluated, can be compacted into its own region of the heap by capturing a
transitive closure of its reachable data. The invariant maintained here is that all pointers inside the CNF
must only point to other objects within the CNF, and outside it. After compaction, this heap can be stored
externally and loaded back into the heap later.

Neither of these approaches have the same design goals as LoCal and LoCalP*: Cap’N Proto, Flat-
Buffers, and CNF preserve internal pointers in their representations, eliding the problem of parallel access
by invariably paying the cost (in memory consumption and lost spatial locality) of maintaining those
pointers. We note that Vollmer et al. showed that LoCal’s representations enable faster sequential traver-
sal than two of those approaches [65], and Section 3.4 shows that our approach is comparable in sequential
performance to LoCal despite also supporting parallelism.

There is a long line of work on flattening and nested data parallelism, where parallel computations
over irregular structures are flattened to operate over dense structures [13, 32, 8]. These projects do not,
however, have the same goals as ours. They focus on array data, generating parallel code, and data lay-
outs that promote data parallel access to the elements of the structure, rather than selectively trading off

between parallel access to structures and efficient sequential access.

98

6. RELATED WORK

6.3. Region-based Memory Management

The main motivation behind region-based memory management[62] was to bring some of the benefits
of stack-based memory management (a technique common in imperative languages like Pascal and Algol)
to higher-order functional languages (primarily Standard ML). In this context, “region types” are a feature
of a type system that tracks what region of memory a value is allocated into, with the goal of safely de-
allocating all values in that region once it goes out of scope.

Often closely associated with region types is region inference [10, 59], a technique for taking an or-
dinary call-by-value program and inferring the region bindings and annotations such that all memory is
safely allocated and deallocated into regions (essentially using region types in a typed intermediate lan-
guage). This was used in the ML-Kit compiler, allowing it to compile arbitrary SML programs without the
need for a general-purpose garbage collector, but practical problems with region inference prevented it
from catching on in mainstream language implementations [60].

One of the issues with region-based memory management is that some common patterns of functional
programming end up causing memory leaks [60]. One such case is iteration via tail recursive functions.
Each iteration will accumulate allocations in a region, even if the allocations from the previous iteration are
no longer live and ideally should be discarded. In the worst case, a program may even end up accumulating
data in a “global region” that spans the lifetime of the whole program, thus ensuring that the memory will
not be de-allocated promptly. Various attempts at extensions or optimizations to region systems have been
proposed to address this, such as storage mode analysis, where a compiler inserts special instructions to
reset the allocation pointer in a region if it can prove the region contains no live values, essentially allowing
its contents to be overwritten [61].

A related limitation of region-based memory management, and of region-based systems in general,
is the requirement that regions have last-in-first-out (LIFO) lifetimes which follow the block structure of
a language [10]. Essentially, as long as regions are introduced with let region, programs are limited to
“static” regions, or regions that are introduced for the static scope of the let binding and eliminated after
leaving that static scope. In other words, memory for the region r is allocated when control enters the
letregion r in e syntactic form, r is live for the execution of e, then r is de-allocated when control leaves

the letregion form.

99

6. RELATED WORK

6.4. Garbage Collection

In [23] Elsman et al. explored combining regions and garbage collection in the MLKit system. The
combination proved less fruitful in this system because most of the memory was still reclaimed by the
region mechanism instead of the generational collector. Moreover, MLKit primarily uses regions to get the
benefits of stack-based memory management, but each object within a region is still traditional in every
other way and all pointers among objects are retained. Thus, its collector does not face the challenges of
copying serialized partially-written objects, and correspondingly, it also doesn’t benefit from the resulting
compaction.

The literature on traditional garbage collection not only includes much work on tracing and reference
counting independently, but also in combination. Our proposed collector is similar to Ulterior reference
counting [11] which also has a copying young-generation and a reference counting old-generation. This
work was further extended in [52], which uses an efficient heap structure named Immix [12] and refer-
ence counting, and also includes a backup tracing collector. The recent LXR collector [69] further builds
on this. It is also based on the Immix heap and uses a combination of tracing and reference counting.
It brings together several optimizations and heuristics, and introduces an efficient remembered set and
a low-overhead write barrier to make reference counting efficient, and is able to reclaim most memory
without any copying. There is ample opportunity to improve our reference counting collector using these
techniques.

Parallel GC. Efficient automatic memory management is a longstanding challenge for parallel func-
tional languages. There is work proposing a split-heap collector that can handle a parallel lazy lan-
guage [41] and a strict one [56], and there is work on a scalable, concurrent collector [63]. A promising
new line of work explores scalable garbage collection by structuring the heap in a hierarchy of heaps,
enabling task-private collections [28]. Recent work has extended the hierarchical heaps model for parallel
functional programs [48] and a parallel garbage collector [6]. The idea is to coordinate memory allocation
and garbage collection with thread scheduling decisions so that each processor can allocate memory with-
out synchronization and independently collect a portion of memory by consulting a collection policy that
is fully distributed and does not require communicating with other processors. All of these designs focus
on a conventional object model for algebraic datatypes that, unlike LoCalP*, assume a uniform, boxed
representation. In the future, we plan to investigate how results in these parallel collectors relate to our

model, where objects may be laid out in a variety of ways.

100

Summary and Future Work

We presented two extensions to the Gibbon compiler and LoCal, concerning parallelism and memory
management. First, we have shown how a practical form of task parallelism can be reconciled with dense
data representations. We demonstrated this result inside a compiler designed to implicitly transform pro-
grams to operate on such dense representations. For a set of tree-manipulating programs we considered
in Section 3.4, this experimental system yielded better performance than existing best-in-class compilers.
To build on what we have presented in this paper, we plan to explore automatic granularity control [4, 3];
this would remove the last major source of manual tuning in Gibbon programs, which already automate
data layout optimizations. Parallel Gibbon with automatic granularity control would represent the dream
of implicitly parallel functional programming with good absolute wall-clock performance. While our cur-
rent approach supports limited examples of data parallelism-friendly data structures beyond trees, such
as dense arrays (Section 3.3.6), we plan to further generalize our system by adding additional data struc-
tures that capture mutable sparse and dense multi-dimensional data. We plan to support limited in-place
mutation of densely-encoded algebraic data, by adding primitives based on linear types, which we expect
to mesh well with the implicitly parallel functional paradigm. While Parallel Gibbon already out-performs
competing parallel, functional approaches, we expect these additional features will both improve pro-
grammability (by relieving the programmer of the burden of granularity control) and performance (by
supporting more efficient parallel structures and strategies).

Second, we presented a new approach to memory management for mostly-serialized heaps, as found
in the Gibbon compiler and runtime system. This hybrid collector is able to allocate objects and regions
quickly and coalesce objects, which were scattered at the points of their allocation, into efficient, serialized
representations. This work is a first step in a new direction that invites further study and refinement. It is
common in computer science to trade-off time and space using compression techniques, and these mostly-
serialized heaps point to opportunities to explore these tradeoffs more deeply in the context of language’s
in-memory representations. More prosaic, there are additional optimizations to develop and apply to our

system to further close the gap with traditional implementation techniques on their “home turf”, (i.e. the

101

7. SUMMARY AND FUTURE WORK

worst-case scenarios for Gibbon’s native representations). Finally, a major topic of future work is to scale

the approach to the parallel setting (both for the mutator and the collector).

7.1. Parallel Garbage Collection

Efficient automatic memory management is a longstanding challenge for parallel functional languages.
We have focused our attention, however, only on sequential programs so far. That is, because it would
be confounding, and also take a significant research and engineering effort, to address parallel garbage
collection simultaneously with developing a collector that operates on serialiazed data representations.
Extending GC-Gibbon to work efficiently in the parallel world is a promising area for future work. We

have a rough sketch on what first step towards this goal would look like, which we explain next.

7.1.1. Parallel mutators. To support parallel programs in a generational setting, we would need to
allow a mutator to allocate young-generation regions in parallel, using multiple threads. We could take
the standard approach of using thread-local young-generation heaps for this purpose. Concretely, we would
initialize an array of young-generations indexed by a thread id. Each mutator would use its host thread’s
id to access the corresponding young-generation and then allocate a region within that. Analogous to
the young-generation, we would also need to maintain thread-local shadow-stacks—we would similarly
initialize an array of shadow-stacks indexed by a thread id.

Since Parallel-Gibbon uses the Intel Cilk Plus language extension [14] to realize parallelism, we could
use the Cilk Plus API to implement the abstraction of a thread id. Fortunately, there is an already existing
mechanism in the API that is sufficient for our purposes. The function __cilkrts_get_nworkers() returns the
total number of Cilk Plus worker threads that can run a parallel task. We could use this function to compute
the size of the young-generation and shadow-stack arrays. Next, the function __cilkrts_get_worker_number()
returns an integer indicating the Cilk Plus worker id (a.k.a. the thread) on which the callee is executing.
We could use this as the thread id.

When a mutator running on a worker thread exhausts its local young-generation heap, it would per-
form three actions: (1) stop executing user code, (2) atomically bump a paused mutator count to indicate
that it has paused, and (3) signal its intention to trigger a minor collection by atomically setting a global
flag. But, we must wait until all the mutators have paused before starting the minor collection. To this end,

we would arrange each mutator to periodically check the global flag, before a function call or a letregion

102

7. SUMMARY AND FUTURE WORK

expression. If the flag is set, each mutator would pause itself. Eventually all mutators would come to a halt
using this mechanism and the last one to do so would trigger the minor collection’.

This simple design has some drawbacks. Checking the global flag would add overhead to function
calls and letregion expressions. Also, this mechanism isn’t a complete solution since a particular mutator
might run for a long time before reaching either of these expressions, in which case the other mutators
will pause indefinitely! In the future, when the collector is more mature, we intend to study and address

these sore spots.

7.1.2. Parallel collection, future directions. Thus far we have only worked out how to enable par-
allel mutators, but it’s equally important to parallelize the collector to scale the overall memory manage-
ment system. Parallelizing a copying collector might seem straightforward: run multiple collector threads
that evacuate different objects. But, it’s hard to get the details right such that the resulting system performs

well. We intend to tackle this problem in the future.

7.2. Layout Optimizations

Gibbon has many benefits: programmers no longer need to take control of low-level data representa-
tion and allocation to serialize linked structures; and rather than writing error-prone index math to access
data, the Gibbon compiler automatically translates idiomatic data structure accesses into operations on
the serialized representation. Gibbon also suffers from drawbacks complementary to the other approaches
mentioned above. It does not attempt to match data layout to the access patterns of a program. If the
particular serialization decisions for a data type chosen by Gibbon do not correspond to the behavior
of functions accessing that data, then pathological behavior can result. Consider a tree laid out in left-to-
right pre-order with a program that accesses that tree right-to-left. Rather than scanning straightforwardly
through the structure, the program would have to jump back and forth through the buffer to access the
necessary data. When encountering such cases, Gibbon does not break: instead, it inserts shortcut pointers
to allow more-random access to structures. But this defeats the purpose of a dense, packed representation:
not only are accesses no longer nicely strided through memory, but the pointers and pointer-chasing of
boxed data have returned. Indeed, when Gibbon is presented with a program whose access patterns do

not match the chosen data layout, the generated code can be significantly slower than plain, pointer-based

The paused mutator count will be equal to the total number of worker threads when the last mutator pauses itself, which

is when collection would begin.

103

7. SUMMARY AND FUTURE WORK

representations. What we want is the best of both worlds: Gibbon’s dense, packed data layouts combined
with access pattern—aware decisions of how to lay out that data.

To that end, we have been working on an extension of the Gibbon compiler named Marmoset that
creates dense, packed data representations that match the way a program accesses that data. Marmoset’s
key insight is twofold. First, that a compile-time analysis can yield insights into how a program is likely
to access the fields of a data structure, including recursive traversal patterns. Second, that Gibbon’s dense,
serialized representation is ideal for taking advantage of this access information. Gibbon’s compilation
strategy makes explicit when field references will result in sub-optimal access patterns, making it possible
to statically estimate the costs of different layout choices. This cost model can be used to drive a search
process for a minimum-cost layout, subject to any additional constraints provided by the programmer.
Marmoset thus analyzes the behavior of a program, and synthesizes a data layout that corresponds to that
behavior. It then rewrites the data type and lowers the program to produce code that operates on a dense,
packed data representation in a way that matches access patterns and data layout, resulting in improved
locality.

We evaluated Marmoset using a realistic blog software application and observed a 2-4X speedup com-
pared to Gibbon. For a microbenchmark that computes the length of a linked list, the performance im-
provement is more pronounced—Marmoset produces code that is 43X faster compared to Gibbon! Consider

a linked list datatype with inlined variable-sized content:

data List = Nil | Cons Content List

If each element of the list is constructed using Cons, the traversal has to de-reference a pointer—to jump
over the content—each time to access the tail of the list. This is an expensive operation, especially if the
target memory addresses is not present in the cache. On the contrary, if the Content and List fields were
swapped, then to compute the length, the program only has to traverse n bytes for a list of length n—one
byte per Cons tag—which is extremely efficient. Essentially, Marmoset transforms the program to use the
following datatype, while preserving its behavior:

data List' = Nil | Cons List' Content

The performance of the list constructed using the original cCons is ~43X worse than the performance with
the Marmoset-optimized, flipped layout. Not only does the optimized layout have better data locality and

cache behavior, but it also has to execute fewer instructions since it does not de-reference the pointer.

104

(1]

Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from tensorflow.org.

D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An efficient parallel heap compaction algorithm. In Proceedings of the
19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 04,
page 224-236. Association for Computing Machinery, New York, NY, USA, 2004. ISBN 1581138318. URL https://doi.org/
10.1145/1028976.1028995.

U. A. Acar, V. Aksenov, A. Charguéraud, and M. Rainey. Provably and practically efficient granularity control. In Proceedings
of the 24th Symposium on Principles and Practice of Parallel Programming, PPoPP 19, pages 214-228. ACM, New York, NY,
USA, 2019. ISBN 978-1-4503-6225-2. URL http://mike-rainey.site/papers/oracle-ppop19-long.pdf.

U. A. Acar, A. Charguéraud, , A. Guatto, M. Rainey, and F. Sieczkowski. Heartbeat scheduling: Provable efficiency for nested
parallelism. 2018. URL http://mike-rainey.site/papers/heartbeat.pdf.

T. A. Anderson, H. Liu, L. Kuper, E. Totoni,]J. Vitek, and T. Shpeisman. Parallelizing Julia with a Non-Invasive DSL. In
P. Miller, editor, 31st European Conference on Object-Oriented Programming (ECOOP 2017), volume 74 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 4:1-4:29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2017. ISBN 978-3-95977-035-4. ISSN 1868-8969. URL http://drops.dagstuhl.de/opus/volltexte/2017/7269.

[6] J. Arora, S. Westrick, and U. A. Acar. Provably space-efficient parallel functional programming. Proc. ACM Program. Lang., 5

(7]

(POPL), jan 2021. URL https://doi.org/10.1145/3434299.

Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for parallel computing. ACM Trans. Program. Lang. Syst.,
11:598-632, October 1989. ISSN 0164-0925. URL http://doi.acm.org/10.1145/69558.69562.

L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, S. Rosen, and A. Shaw. Data-only flattening for nested data parallelism. In
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, pages 81-92.
Association for Computing Machinery, New York, NY, USA, 2013. ISBN 9781450319225. URL https://doi.org/10.1145/
2442516.2442525.

[9] J.-P. Bernardy, M. Boespflug, R. R. Newton, S. Peyton Jones, and A. Spiwack. Linear haskell: Practical linearity in a higher-

(10]

order polymorphic language. Proc. ACM Program. Lang., 2(POPL), Dec. 2017. URL https://doi.org/10.1145/3158093.
L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von neumann machines via region representation infer-

ence. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL *96, page

105

(11]

(19]

(20]

(21]

BIBLIOGRAPHY

171-183. Association for Computing Machinery, New York, NY, USA, 1996. ISBN 0897917693. URL https://doi.org/10.

1145/237721.237771.

S. M. Blackburn and K. S. McKinley. Ulterior reference counting: Fast garbage collection without a long wait. In Proceedings
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and Applications, OOPSLA
’03, page 344-358. Association for Computing Machinery, New York, NY, USA, 2003. ISBN 1581137125. URL https://doi.

org/10.1145/949305.949336.

S. M. Blackburn and K. S. McKinley. Immix: A mark-region garbage collector with space efficiency, fast collection, and
mutator performance. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 08, page 22-32. Association for Computing Machinery, New York, NY, USA, 2008. ISBN 9781595938602. URL
https://doi.org/10.1145/1375581.1375586.

G. E. Blelloch. Nesl: A nested data-parallel language. Technical report, USA, 1992.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP ’95, page 207-216. Association for Computing Machinery, New York, NY, USA, 1995. ISBN 0897917006. URL https:

//doi.org/10.1145/209936.209958.

D. G. Bobrow and D. W. Clark. Compact encodings of list structure. ACM Trans. Program. Lang. Syst., 1(2):266—286, oct 1979.
ISSN 0164-0925. URL https://doi.org/10.1145/357073.357081.

M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover. Accelerating haskell array codes with multicore gpus.
In Proceedings of the Sixth Workshop on Declarative Aspects of Multicore Programming, DAMP ’11, page 3-14. Association
for Computing Machinery, New York, NY, USA, 2011. ISBN 9781450304863. URL https://doi.org/10.1145/1926354.

1926358.

C. J. Cheney. A nonrecursive list compacting algorithm. Commun. ACM, 13(11):677-678, nov 1970. ISSN 0001-0782. URL
https://doi.org/10.1145/362790.362798.

A. Chlipala. An optimizing compiler for a purely functional web-application language. In Proceedings of the 20th ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2015, pages 10-21. ACM, New York, NY, USA, 2015. ISBN
978-1-4503-3669-7. URL http://doi.acm.org/10.1145/2784731.2784741.

A. Chlipala. Ur/web: A simple model for programming the web. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, page 153-165. Association for Computing Machinery, New
York, NY, USA, 2015. ISBN 9781450333009. URL https://doi.org/10.1145/2676726.2677004.

B. Choi, R. Komuravelli, V. Lu, H. Sung, R. L. Bocchino, S. V. Adve, and J. C. Hart. Parallel sah k-d tree construction. In
Proceedings of the Conference on High Performance Graphics, HPG 10, page 77-86. Eurographics Association, Goslar, DEU,
2010.

D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage collection. In Proceedings of the 4th International Sym-
posium on Memory Management, ISMM 04, page 37-48. Association for Computing Machinery, New York, NY, USA, 2004.
ISBN 1581139454. URL https://doi.org/10.1145/1029873.1029879.

106

[22]

(23]

[24]

BIBLIOGRAPHY

G. Developers. System fc, as implemented in ghc. URL https://gitlab.haskell.org/minimario/ghc/-/blob/master/
docs/core-spec/core-spec.pdf.

M. Elsman and N. Hallenberg. On the effects of integrating region-based memory management and generational garbage
collection in ml. In International Symposium on Practical Aspects of Declarative Languages, pages 95-112. Springer, 2020.

M. Felleisen, R. B. Findler, and M. Flatt. Semantics engineering with PLT Redex. Mit Press, 2009.

[25] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM

(31]

(33]

(34]

(36]
(37]

Trans. Math. Softw., 3(3):209-226, Sept. 1977. ISSN 0098-3500. URL https://doi.org/10.1145/355744.355745.

M. Goldfarb, Y. Jo, and M. Kulkarni. General transformations for gpu execution of tree traversals. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis (Supercomputing), SC 13, 2013.

Google. Flatbuffers, 2014. URL https://google.github.io/flatbuffers/.

A. Guatto, S. Westrick, R. Raghunathan, U. Acar, and M. Fluet. Hierarchical memory management for mutable state. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’18, pages 81-93.
Association for Computing Machinery, New York, NY, USA, 2018. ISBN 9781450349826. URL https://doi.org/10.1145/
3178487.3178494.

R. H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM Trans. Program. Lang. Syst., 7(4):501-538,
Oct. 1985. ISSN 0164-0925. URL https://doi.org/10.1145/4472.4478.

T. Harris and S. Singh. Feedback directed implicit parallelism. In Proceedings of the 12th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP °07, page 251-264. Association for Computing Machinery, New York, NY, USA, 2007.
ISBN 9781595938152. URL https://doi.org/10.1145/1291151.1291192.

F. Henderson. Accurate garbage collection in an uncooperative environment. In Proceedings of the 3rd International Sympo-
sium on Memory Management, ISMM ’02, page 150-156. Association for Computing Machinery, New York, NY, USA, 2002.
ISBN 1581135394. URL https://doi.org/10.1145/512429.512449.

G. Keller and M. M. T. Chakravarty. Flattening trees. In Proceedings of the 4th International Euro-Par Conference on Parallel
Processing, Euro-Par ’98, pages 709-719. Springer-Verlag, Berlin, Heidelberg, 1998. ISBN 3540649522.

K. Kodama, K. Suenaga, and N. Kobayashi. Translation of tree-processing programs into stream-processing programs based
on ordered linear type. In Asian Symposium on Programming Languages and Systems, pages 41-56. Springer, 2004.

C. Koparkar, M. Rainey, M. Vollmer, M. Kulkarni, and R. R. Newton. Efficient tree-traversals: Reconciling parallelism and
dense data representations. Proc. ACM Program. Lang., 5(ICFP), 2021.

L. Kuper, A. Todd, S. Tobin-Hochstadt, and R. R. Newton. Taming the parallel effect zoo: Extensible deterministic parallelism
with lvish. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, page 2-14. Association for Computing Machinery, New York, NY, USA, 2014. ISBN 9781450327848. URL https://doi.

org/10.1145/2594291.2594312.

D. Lea. A java fork/join framework. In Proceedings of the ACM 2000 conference on Java Grande, pages 36—43, 2000.

X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The ocaml system release. Feb 2020. URL https://

ocaml.org/releases/4.10/htmlman/index.html.

107

BIBLIOGRAPHY

[38] J. Makino. Vectorization of a treecode. J. Comput. Phys., 87:148-160, March 1990. ISSN 0021-9991. URL http: //portal.acm.

(39]

(48]

(49]

org/citation.cfm?id=78582.78602.

S. Marlow, T. Harris, R. P. James, and S. Peyton Jones. Parallel generational-copying garbage collection with a block-
structured heap. In Proceedings of the 7th International Symposium on Memory Management, ISMM °08, page 11-20. As-
sociation for Computing Machinery, New York, NY, USA, 2008. ISBN 9781605581347. URL https://doi.org/10.1145/
1375634.1375637.

S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic parallelism. SIGPLAN Not., 46(12):71-82, Sept. 2011.
ISSN 0362-1340. URL https://doi.org/10.1145/2096148.2034685.

S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for multicore haskell. In Proceedings of the 14th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’09, page 65-78. Association for Computing Machinery, New York,
NY, USA, 2009. ISBN 9781605583327. URL https://doi.org/10.1145/1596550.1596563.

M. D. MclIlroy. Power series, power serious. J. Funct. Program., 9(3):325-337, may 1999. ISSN 0956-7968. URL https://doi.
org/10.1017/50956796899003299.

R. Menon and L. Dagum. Openmp: An industry-standard api for shared-memory programming. Computing in Science and
Engineering, v(01):46-55, jan 1998. ISSN 1558-366X.

L. A. Meyerovich, T. Mytkowicz, and W. Schulte. Data parallel programming for irregular tree computations. In Hot-
PAR. USENIX, May 2011. URL https://www.microsoft.com/en-us/research/publication/data- parallel-
programming-for-irregular-tree-computations/.

R. Milner, M. Tofte, and D. Macqueen. The Definition of Standard ML. MIT Press, Cambridge, MA, USA, 1997. ISBN 0262631814.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems, pages
8026-8037, 2019.

L. Petersen, R. Harper, K. Crary, and F. Pfenning. A type theory for memory allocation and data layout. ACM SIGPLAN
Notices, 38(1):172-184, 2003.

R. Raghunathan, S. K. Muller, U. A. Acar, and G. Blelloch. Hierarchical memory management for parallel programs. ACM
SIGPLAN Notices, 51(9):392-406, 2016.

M. Rainey, K. A. Hale, R. Newton, N. Hardavellas, S. Campanoni, P. Dinda, and U. Acar. Task parallel assembly language for

uncompromising parallelism. 2021.

[50] J. Reppy, C. V. Russo, and Y. Xiao. Parallel concurrent ml. In Proceedings of the 14th ACM SIGPLAN International Conference

(52]

on Functional Programming, ICFP *09, page 257-268. Association for Computing Machinery, New York, NY, USA, 2009. ISBN
9781605583327. URL https://doi.org/10.1145/1596550.1596588.

D. Sarkar, O. Waddell, and R. K. Dybvig. A nanopass infrastructure for compiler education. In Proceedings of the Ninth
ACM SIGPLAN International Conference on Functional Programming, ICFP ’04, page 201-212. Association for Computing
Machinery, New York, NY, USA, 2004. ISBN 1581139055. URL https://doi.org/10.1145/1016850.1016878.

R. Shahriyar, S. M. Blackburn, X. Yang, and K. S. McKinley. Taking off the gloves with reference counting immix. In Proceed-
ings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications,

108

(54]

BIBLIOGRAPHY

OOPSLA ’13, page 93-110. Association for Computing Machinery, New York, NY, USA, 2013. ISBN 9781450323741. URL
https://doi.org/10.1145/2509136.2509527.

A. Shaikhha, A. Fitzgibbon, S. Peyton Jones, and D. Vytiniotis. Destination-passing style for efficient memory management.
In Proceedings of the 6th ACM SIGPLAN International Workshop on Functional High-Performance Computing, FHPC 2017, pages
12-23. ACM, New York, NY, USA, 2017. ISBN 978-1-4503-5181-2. URL http://doi.acm.org/10.1145/3122948.3122949.
J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri, and K. Tangwongsan. Brief announcement:
The problem based benchmark suite. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA 12, pages 68-70. Association for Computing Machinery, New York, NY, USA, 2012. ISBN
9781450312134. URL https://doi.org/10.1145/2312005.2312018.

[55] J.Siek, C.Factora, A. Kuhlenschmidt, R. Newton, S. Ryan, C. Swords, M. Vitousek, and M. Vollmer. Essentials of compilation:

An incremental approach, 2020. URL https://iucompilercourse.github.io/IU-P423-P523-E313-E513-Fall-2020/.
K. Sivaramakrishnan, S. Dolan, L. White, S. Jaffer, T. Kelly, A. Sahoo, S. Parimala, A. Dhiman, and A. Madhavapeddy.
Retrofitting parallelism onto ocaml. volume 4. Association for Computing Machinery, New York, NY, USA, Aug. 2020. URL
https://doi.org/10.1145/3408995.

K. Sivaramakrishnan, S. Dolan, L. White, S. Jaffer, T. Kelly, A. Sahoo, S. Parimala, A. Dhiman, and A. Madhavapeddy.
Retrofitting parallelism onto ocaml. arXiv preprint arXiv:2004.11663, 2020.

M. Sulzmann, M. M. T. Chakravarty, S. P. Jones, and K. Donnelly. System f with type equality coercions. In Proceedings of
the 2007 ACM SIGPLAN International Workshop on Types in Languages Design and Implementation, TLDI *07, page 53—-66.
Association for Computing Machinery, New York, NY, USA, 2007. ISBN 159593393X. URL https://doi.org/10.1145/
1190315.1190324.

M. Tofte and L. Birkedal. A region inference algorithm. ACM Trans. Program. Lang. Syst., 20(4):724-767, jul 1998. ISSN 0164-
0925. URL https://doi.org/10.1145/291891.291894.

M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A retrospective on region-based memory management. Higher Order
Symbol. Comput., 17(3):245-265, Sept. 2004. ISSN 1388-3690. URL https://doi.org/10.1023/B:LISP.0000029446.78563.
a4.

M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value lambda-calculus using a stack of regions. In Proceedings
of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’94, page 188-201. Association
for Computing Machinery, New York, NY, USA, 1994. ISBN 0897916360. URL https://doi.org/10.1145/174675.177855.
M. Tofte and J.-P. Talpin. Region-based memory management. Inf. Comput., 132(2):109-176, Feb. 1997. ISSN 0890-5401. URL
http://dx.doi.org/10.1006/inco.1996.2613.

K. Ueno and A. Ohori. A fully concurrent garbage collector for functional programs on multicore processors. In Proceedings
of the 21st ACM SIGPLAN International Conference on Functional Programming, pages 421-433, 2016.

K. Varda. Cap’n Proto, 2015. URL https://capnproto.org/.

M. Vollmer, C. Koparkar, M. Rainey, L. Sakka, M. Kulkarni, and R. R. Newton. Local: A language for programs operating on
serialized data. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,

109

BIBLIOGRAPHY

PLDI 2019, pages 48-62. Association for Computing Machinery, New York, NY, USA, 2019. ISBN 9781450367127. URL https:
//doi.org/10.1145/3314221.3314631.

M. Vollmer, S. Spall, B. Chamith, L. Sakka, C. Koparkar, M. Kulkarni, S. Tobin-Hochstadt, and R. R. Newton. Compiling
Tree Transforms to Operate on Packed Representations. In P. Miiller, editor, 31st European Conference on Object-Oriented
Programming (ECOOP 2017), volume 74 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1-26:29. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017. ISBN 978-3-95977-035-4. ISSN 1868-8969. URL http:
//drops.dagstuhl.de/opus/volltexte/2017/7273.

S. Westrick, R. Yadav, M. Fluet, and U. A. Acar. Disentanglement in nested-parallel programs. Proc. ACM Program. Lang., 4
(POPL), Dec. 2019. URL https://doi.org/10.1145/3371115.

E.Z.Yang, G. Campagna, O. S. Agacan, A. El-Hassany, A. Kulkarni, and R. R. Newton. Efficient communication and collection
with compact normal forms. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015, pages 362-374. ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3669-7. URL http://doi.acm.org/10.1145/
2784731.2784735.

W. Zhao, S. M. Blackburn, and K. S. McKinley. Low-latency, high-throughput garbage collection. In Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2022, page 76-91. As-
sociation for Computing Machinery, New York, NY, USA, 2022. ISBN 9781450392655. URL https://doi.org/10.1145/
3519939. 3523440.

110

Sample Gibbon Programs

- - — Compute the nth fibonacci number, in parallel.
parfib :: Int — Int — Int
parfib cutoff n =
if n <1
then n
else if n < cutoff
then seqfib n
else let (x,y) = (parfib cutoff (n-1)) ||
(parfib cutoff (n-2))

in x +y

—— — Parallel "buildTreeHvyLf".
buildTreeHvyLf :: Int — Int — Tree
buildTreeHvyLf cutoff i =
if i < 0
then Leaf (seqfib 20)
else if i < cutoff
then buildTreeHvylLf_seq i
else let (x,y) = (buildTreeHvyLf cutoff (i-1)) |
(buildTreeHvyLf cutoff (i-1))

in Node i x y

FiGURE A.1. Programs for fib, buildtreeHvyLf.

111

A. SAMPLE GIBBON PROGRAMS

type Point3d = (Float, Float, Float)

—— In Gibbon, the Kdtree type will be represented in a dense, mostly-serialized format:

data KdTree = KdLeaf { x :: Float, y :: Float, z :: Float }

| KdNode { x :: Float, y :: Float, z :: Float
, total_elems i Int —— Number of elements in this node
, split_axis :: Int = (0:x, 1: y, 2: z)
, split_value :: Float
, min :: Point3d, max :: Point3d
, left :: KdTree, right :: KdTree
}

| KdEmpty

—— — Maps an array of points to an array of their nearest neighbor.
allNearest :: KdTree — Array Point3d — Array Point3d
allNearest tr 1ls =
—— parallel map with a chunk-size of 1024.
par_map 1024 (\p — nearest tr p) ls
where
nearest :: KdTree — Point3d — Point3d

nearest =

FIGURE A.2. allNearest in Gibbon’s front-end language (Haskell).

112

Type-Safety Proof for LoCalP?"

This section contains typing rules for LoCalP®" (Section B.1) and the complete proof of type-safety for
LoCalP?" (Section B.2).

B.1. Typing Rules for LoCal

[T-FUNCTION-DEFINITION]
I CANEAN e:t@l "¢ N

Vie(rn) 340 =00 30 =10

Frun f \7’17.7@[’ — 1@l fx =e

"

where I'={x; —» r@L", ... , X, — 1,@1," }
— —
Zz{llrli—)fl,...,lnr"HTn}

C=0; A={r—>TI} N={I'};
n=|%| =@l
[T-PROGRAM]
brun fd T35 GANE AN e t@l

Fprog A3 N’ d—\d ;j?d se:t@l"
where '=0; =0

C={l'vstartry; A={r> 1"}, N={I"}

Ficure B.1. A copy of the typing rules for LoCal given in [65]. See also Figure B.3.

113

B. TYPE-SAFETY PROOF FOR LoCalP?"

[T-VAR] [T-ConcreTE-LOC]
I'(x) =r@!" (I =1 (I =1

I2C;ANEFAN;x:t@l" I';2,C,A;N v A;Ns (r, i)l ct@l”
[T-LET]
I CGANA;N e @™ L"eN L"¢N
F’;Z’;C;A,;N’ = A”;N”;eg H Tg@lzrz lzrz eN

F;Z; C;A;N = A";N”;let X : Tl@llrl =e in ey : Tg@lzrz
where I"=TU{x > n@L"}; ¥ =XU{L"— 1}

[T-LETREGION]
I3 CAN+-A”;N;e: T@l'rl I'" eN

;5 C,A:NFA”;N; letregion rine: r@!'"
where A" = AU{r— 0}

[T-LETLOC-START]
A(N=0 TI'e¢N’ I'"#I' I"eN TIZCANrA ;N e 7@l

5 C AN+ A’ ;N letloc I' = start rine: @l
where C'=CU{l" startr}; A =AU{r>1"}; N=NU{Il"}

[T-LETLOC-TAG]
A(T") =" l/r’ l//r" eN I ¢ N’ I+ l//r" I C/;A/;N/ E A”;N”; e: 7'_//(@l//r”

I;5CANEA ;N letlocI'=(I'" +1) ine: T"@l"r”
where C'=CU{l"'—> (I"+1)}; A=AU{r—1I}; N=NU{l'}

[T-LETLOC-AFTER]
A(r)=1"
(=1 L'¢N I"¢ N” r+rr ;5 CA N FA’;N"e: T,@l,r/ I eN

I3 C;A; N+ A”;N”;letloc I = after 7’ @ ine: T,@l,r/
where C'=CU{Il" = after /@’ }; A =AU{r—=1I'}; N=NuU{Il"}

FiGURE B.2. A copy of remaining typing rules for LoCal given in [65].

114

B. TYPE-SAFETY PROOF FOR LoCalP?"

[T-Arp]
=1 V=1
I5,CANF A N; v : ;@17 I"eN A(r)=1

_— N

N . — N
vl rio_ pr T4 r_ pr;
Vi.Eij.li i _lj I AL —lj] 3]l _lj I AL —ljf

—_

I5CANEAN;f [l'r,] v:t@l

where f: VW-Ti@l{"r'{” — t@I"""";(f¥ =€) = Function(f)

N =N-{I'};n=|v|;ie{1, ... ,n}

[T-DATACONSTRUCTOR]
TypeOfCon(K) =t TypeOfField(K, i) = ;l;
F'eN A()=1 ifnz0 elsel’
CY=I+1 C(h') = after (7 @L)

I35 C AN A;N; v, @l

IS CGANEANKT vV r@l
where A'=AU{r—>1"}; N'=N-{I"}
n=|v[;iel={1 ...,n} jel-{n}

[T-CasE]
F;Z;C;A;NFA;N;VZT’@ZW, I"eN
T332 G AN bpa A';N’;ﬁ cr@l”

I CANEA ;N ;case v ofp_a; ct@l”

where n= |ﬁ|; ie{1,...,n}
[T-PATTERN]
TypeOfCon(K) = ¢ ArgTysOfConstructor(K) = >IN =r
I+ ll{r, I, > C;A N+ A ;N e:t@l

;5 C AN bpgr AN K (x: r’@l’r/) — e:t@l"

—_

’ — = 7 - = rr
where I"'=T'U{Xx; —» @l , ... ,xp — 7,@l }
Z/_Z-U{llr/'_)él l/rlHé/}
= ? (N 7,

ie{l,...,n}; n=||=|x: @I

FicURE B.3. A copy of remaining typing rules for LoCal given in [65].

115

B. TYPE-SAFETY PROOF FOR LoCalP?"

B.2. Type-Safety

We state the type-safety theorem as follows:

THEOREM B.2.1 (Type Safety).
If 0; ;G AN Fyggser ASNST A CGANRyg, T
and T =7, T'
then, either YT € T’. TaskComplete(T)
or AT". T =, T”.
This theorem states that, if a given task set T is well typed and its overall store is well formed, and if

T makes a transition to some task set T’ in n steps, then either all tasks in T” are fully evaluated or T’ can

take a step to some task set T”’. As usual, we prove this theorem by showing progress and preservation.

LEmmaA B.2.2 (Top Level Progress).
If 0; ;G AN Fraskser A NGT
and ;C;A;N Fawfrasks L
then YT € T. TaskComplete(T)

else T=,, T'.

Proof: If every T € T has evaluated to a value, we have no further proof obligations. Otherwise, the
obligation is to show that there is at least one task which can take a sequential or a parallel step. By
inversion on T-Taskset, and the typing rule given in the premise of this lemma, we know that all tasks in
the task set T are well-typed. Then, by inversion on T-Task, we know that the expression e it is evaluating
is also well-typed. We show that there is at least one T € T which can take a sequential or a parallel step,

by performing induction on the typing derivation of the expression e that a task is evaluating.
Case: T-Let, e=letx:7; =¢; in e

[T-LeT]
2 CGANEFA N ;e i@ L"eN " ¢N
I > CA;N rA";N"; e, : @b L? €N

S CANEA N letx 1@ =€ in ey : @L"™
where I' =T'U{x— rn@h" }; ' =XU{L"— 1}

116

B. TYPE-SAFETY PROOF FOR LoCalP?"

Because e is not a value, the proof obligation is to show that there is at least one task which can
take a step. That is, there is a rule in the dynamic semantics whose left-hand side matches the machine
configuration T. There are two rules that can match.

(1)
[D-PAR-LET-FORK]
Ty, ..., (7, cl, S Mse), ... Ty, =) T, ..., (71, cl}, Ss M 1), ... Ty, (7, cl, S; My; €})
where e=(letx:7 = e ine); 71 = 1@L"
xy fresh; ¢l = (ri, ivar x1); e, = ex[cly/x]

M={llrlf—>Cll}UM,; M2={llr1+—>Cl;}UM/

By inversion on D-Par-Let-Fork, the only obligation is to estalish that c/; = M(L,"). By
applying the rule WF 3.2.5.1;2 for the well-formedness of the task set given in the premise of this
lemma, we can obtain a well-formedness result for the store and location map used by this task:
2, G A;N; T by M; S. We can then perform inversion on the well-formedness of the store, and
apply the rule WF 3.2.5.2;3 to obtain A; N+, M;S. Finally, we apply WF 3.2.5.4;3 to obtain
(r,i) = M(I;"). Thus we have discharged the proof obligation, and this task can take a parallel
step using D-Par-Let-Fork.

[D-PAR-STEP]
S;M;e= S';:M'; ¢

Ty, ..., (7, cl,S; Mse), .. T, =p Th, ..., (7, cl, SsMe), .. Ty

To obtain this result, we use Lemma B.2.3 for single thread progress. There are two precon-
ditions in order to use this lemma: 0; X; C;A; N + A';N';e: 7, and X; C; A; N; M by S;. The first
precondition is already established at the start of the proof, by performing inversion on T-Taskset,
and then on T-Task. The second precondition can be discharged by performing inversion on the
on the well-formedness of the task set given in the premise of this lemma, and then applying the

rule WF 3.2.5.1;2.

117

B. TYPE-SAFETY PROOF FOR LoCalP?"

N

Case: T-DataConstructor-Ivars, e= K [" v

[T-DATACONSTRUCTOR-IVARS]

TypeOfCon(K) =7 TypeOfField(K, i) = 7,
I"eN A(r)z? ifn#0 elsel

C(LH=I'+1 C(li41") = after (r]f@ljfr)
Frer.(r, ivar x¢) = v I5CA;NFAN; v @l

IS GANFANKT v r@l
where n=|v|;iel={1,...,n};jel-{n}
Because e is not a value, the proof obligation is to show that there is a task which can take a step. That
is, there is a rule in the dynamic semantics whose left-hand side matches the machine configuration T.

There is a single rule that can match.

[D-PAR-DATACONSTRUCTOR-JOIN]
Ty, .., (T ek, SsMse), ... Ty =pp T1, ., T, Ty
where e=K I" v; (r,ivar xj) = V; T.e{T,...T,}
T = (2@L", (. ivar x;), Se; Me: (. 1))
M’ = MergeM(M,, M); S" = MergeS(S, S)
n=|7 V= [V Va5 i), Vit s W]
17; = TypeOfField(K, j);
S" = LinkFields(S', M, 7j, (r, ic>lc) if j#n else S
e=KI 7; T =(%,c,S";M';€)

If any of the fields of the data constructor have evaluated to an ivar, the only rule that can match
is D-Par-DataConstructor-Join. By inversion on D-Par-DataConstructor-Join, the only obligation then is
to find a task T, which supplies a value of that ivar. To obtain this result we perform inversion on the
well-formedness of the task set given in the premise of this lemma, and apply the rule WF 3.2.5.1;1. Thus,
we know that exactly one such task T, exists. There are two possible states in which the task T. may be
in — it may have evaluated its expression to a value, or not. If the former is true, then the rule D-Par-

DataConstructor-Join matches, and this task can take a step. Otherwise, the T, or one of its child tasks

can take a step, and thus this case.

118

B. TYPE-SAFETY PROOF FOR LoCalP?"

Case: T-Case, e = case v of ﬁ @l

Because e is not a value, the proof obligation is to show that there is a task which can take a step. That
is, there is a rule in the dynamic semantics whose left-hand side matches the machine configuration T.
There are two rules that can match: D-Par-Case-Join, or D-Par-Step. With respect to D-Par-Case-Join, it
can be discharged by using similar reasoning as the T-DataConstructor-Ivars case. As for D-Par-Step, we

use Lemma B.2.3 for single thread progress like earlier.

Case:
The cases for T-DataConstructor, T-LetRegion, T-LetLoc-Tag, T-LetLoc-Start, T-LetLoc-After, T-Var, and
T-Concrete-Loc use the Lemma B.2.3 for single thread progress, and can be discharged by using similar

reasoning to the previous cases.
[
LemMma B.2.3 (Single Thread Progress).
If 0;X,C;ANr-A;N';e: 7
and X;C;A;N; M Fawf S
then e value
else S;M;e= S';M';¢.
Proof: The proof is by induction on the typing derivation of e.

Case: T-LetLoc-After, e = letloc " = after 7’ @/L," in ¢

[T-LETLOC-AFTER]
Ar)=1"
(W =1 L"¢ N "¢ N” I+ rr ;X CAN A", N e: T'@l'r, I'" eN

[5G AN F A”;N”;letloc I' = after 7’@L" ine: 7@
where C'=CU{l"— after 7@, " }; A =AU{r=1T"}; N=NU{l}
Because e is not a value, the proof obligation is to show that there is a task which can take a step. That
is, there is a rule in the dynamic semantics whose left-hand side matches the machine configuration S; M; e.
There are two rules that can match: D-LetLoc-After, or D-LetLoc-After-NewReg. They both have a similar
precondition: ¢/ = M (Li"). To obtain this result, we need to use rule WF 3.2.5.2;1 of the well-formedness of

the store given in the premise of this lemma. This rule requires that X(};") = 7/, which can be obtained by

119

B. TYPE-SAFETY PROOF FOR LoCalP?"

inversion on T-LetLoc-After. By inversion on WF 3.2.5.2;1, we can establish that either (r, i) = M(I"), or
(r,ivar x) = M(L;") holds. The individual requirements for each case are handled by the following case
analysis.

(1) (r i) = ML)
[D-LETLOC-AFTER]

S;M;letloc I" = after t@l," ine= S; M';e
where (r, i) = M(L"); 7:(r, i); S Few (1,)
M =MU{l"— (r,j)}
If (r, iy = M(I,;"), the only rule that can match is D-LetLoc-After. The only remaining obliga-
tion is to show that an end-witness j for the value allocated at the address (r, i) exists:
;{1 i); S Few (7, j). This can be discharged by applying the rule WF 3.2.5.2;1. If (r, i) = ML),
the first disjunct of WF 3.2.5.2;1 holds, and thus discharges our required obligation.
(2) (r,ivar x) = M(l;")
[D-LETLOC-AFTER-NEWREG]
S;M;letloc I" = after t@l," ine= S';M’;e
where (r,ivar x)* = M(l,"); 7 fresh

S=SuU{r=0s M=MU{l"— (r,&(r,0))}
This rule has no remaining obligations, and matches directly, and thus this case.
Case:

The cases for T-DataConstructor, T-Let, T-LetRegion, T-LetLoc-Tag, T-LetLoc-Start, T-Var, T-Concrete-Loc,

T-Appare similar to the proof of progress for sequential LoCal given in [65].

LeEMMA B.2.4 (Top Level Preservation).
If 0; ;C AN Frgskser ABNGT
and ;CANk,p T
and T=,, T'
then for some deepSuperSetEqS(',), deepSuperSetEqC(C’,C), A” 2 A’, N” D N’
0; CHAYNY Fraskser AN T

TN RN ’
and ";C;A";N Fawfrasks L -

120

B. TYPE-SAFETY PROOF FOR LoCalP?"

Proof: The proof is by induction on the given derivation of the dynamic semantics.
Case: D-Par-Let-Fork

[D-PAR-LET-FORK]
Ty, ... (T, cl, S; Mse), .. Ty = rp Th, ., (1, €Iy, Ss Ms), .. Ty, (7, €L, S; Mo €))
where e= (letx: 7 = e ine); 71 = 1@L"
xy fresh; ¢l = (r, ivar x1); e, = ex[cly/x]
M={h"w—ch}UM; My={hL"— clj} UM
Let ¥ = (cl), C = C(cl), A= A(cl),and N = A(cl) be the environments corresponding to the task
(7, cl, S; M; e). We instantiate the new environment maps as:
X =Xu{hi"-1}
"= U{cdi X cd— 3}
C'=Cu{ci—C}
A" =AU {cl]— A}
N"=NU{clj+— N}
The task executing the body of the let expression has the target location cl. In ’, we include an updated
entry, (cl — '), to establish the allocation of the bound expression. And we extend the environments
’,C’, A’, and N’ to contain an entry for cl, which is the target location of the task executing the bound
expression, as the incoming environments won'’t contain an entry for cl{, which is a fresh concrete location

generated by D-Par-Let-Fork.

(1) The first obligation is to show that the result T’ of the evaluation step is well-typed with respect to
the environments ’, C’, A”, and N”’. By inversion on T-Taskset, the obligation then is to show
that all tasks in T’ are well-typed. By the typing rule given in the premise of this lemma and
by inversion on T-Taskset, we can directly establish the well-typedness of the tasks in T. Thus
there are only two remaining obligations, namely to show that the two new tasks spawned by
D-Par-Let-Fork are well-typed.

(@) Let X = (cl}), C=C(cly), A=A(cl}), N=A(cl)).
Obl: 0;X; C; AN Frase A N5 (14, cli, S; M eq)
By inversion on T-Task, we see that in order to prove that this task is well-typed, we must
show that the expression e; is well-typed with respect to the environments X, C, A, and

N. Concretely, the obligation is to show that 0;3; C; A;N + A’;N’;e; : 77 holds. We can

121

B. TYPE-SAFETY PROOF FOR LoCalP?"

discharge this obligation as follows. By the typing rule given in the premise of this lemma,
and by inversion on T-Taskset, we can establish that the task (7, cl, S; M; e) is well-typed. By
inversion on T-Task, we establish that the expression eis well-typed: I'; X; C; A; N + A’; N'; e :
7. Then by inversion on T-Let, we can obtain the desired result.
(b) Let X’ = (cl), C=C(cl), A= A(cl), N=A(c).
ObL: 0;X"; C; A; N Frasie A5 N5 (7, cl, S; My; e5)
This obligation can be discharged by using similar reasoning as above. The only difference is
that in order for the expression e), to typecheck, T-Let requires the location of bound expres-
sion, [;"1, to be in the store typing environment. The environment 3’ that is instantiated for
this task fulfils this requirement, and thus this obligation is discharged.
(2) The second obligation is to show that the result of the evaluation step is well-formed. The individ-
ual requirements, labeled WF 3.2.5.1;1 - WF 3.2.5.1;2, are handled by the following case analysis.
e Case (WF 3.2.5.1;1): for each ivar (r, ivar x) in the result T, there exists exactly one task in
T’ which supplies a well-typed value for it.
By the well-formedness of the task set given in the premise of this lemma, this already holds
for all ivars in the task set T. The only remaining obligation then is to show that a cor-
responding unique task exists for the only new ivar introduced by D-Par-Let-Fork, namely
(r1, ivar x1). This obligation discharges straightforwardly by inversion on D-Par-Let-Fork,
and the typing rule given in the premise of this lemma.
e Case(WF 3.2.5.1;2): the stores of all tasks in the result T are well-formed.
By the well-formedness of the task set given in the premise of this lemma, we can directly
establish the well formedness of stores of all tasks in the task set T. Thus there are only two
remaining obligations, to show that the stores of the two new tasks spawned by D-Par-Let-
Fork are well-formed.
(a) Case (71, cl}, S; M; er); X, GG AN T boyp S; M:
Since all of the environments remain unchanged in this task, this case follows imme-
diately by inversion on the well-formedness of the task set given in the premise of this

lemma.

(b) Case (7, cl, S; My; €5); and X'; C; A", N'; T by p S My:

122

B. TYPE-SAFETY PROOF FOR LoCalP?"

This task uses the updated environment >’ = XU { ;" + 7] }, so we must show the
store S, and location map M, are well-formed. The individual requirements, labeled
WF 3.2.5.2;1 - WF 3.2.5.2;4, are handled by the following case analysis.
— Case (WF 3.2.5.2;1):
I'>nelk=
(ry i) = M(I) A T5(r, i1)5 S Few (1 i2)) ©
({r,ivar x) = M(I") A
o e (7, (r,ivar x),S’; M'; ¢’) = GetSingleWriter(T, 7, ivar x) A
(riry = M/(I") A
(IsVal(e) = 1;{(r,i1);S Few (1, i2)))
By the well formedness of the task set given in the premise of this lemma, we
establish the well formedness of stores of all tasks in the task set T, and we obtain
the result X; C; A; N; T Fwp S5 M. Thus, for all locations in X, the above already
holds. Then the only obligation is to show that it holds for the new location added
to X, ;™. For [;", the second disjunct follows straightforwardly by inversion on
D-Par-Let-Fork.
— Cases (WF 3.2.5.2;2), (WF 3.2.5.2;3), and (WF 3.2.5.2;4):
The remaining three cases also discharge straightforwardly by inversion on D-Par-
Let-Fork, and on the well-formedness of the task set given in the premise of this

lemma.
Case: D-Par-DataConstructor-Join

[D-PAR-DATACONSTRUCTOR-JOIN]
Ty, (B cL S Ms€), o, Ty =1p Toy o, Ty o, T

where e=K I" v; (r,ivar xj) = V}; T.e{T,..,T,}

T. = (2e@L’, (r, ivar x;), Se; Me; (1, ic)*)

M’ = MergeM(M,, M); S" = MergeS(S, S)

n= T V= [V Vo (i), Vi s]

7; = TypeOfField(K, j);

S" = LinkFields(S', M, 7j, (r, i)y if j#n else S

_

€=KI'V; T =(5,c,S";M;¢)

123

B. TYPE-SAFETY PROOF FOR LoCalP?"

Let ¥ = (cl), C = C(cl), A = A(cl), and N = A(cl) be the environments corresponding to the
task (7, cl, S; M;e), and let X, = ({r,ivar x)), C. = C({r,ivar x)), Ac = A({r,ivar x)), and N, =
A((r,ivar x)) be the environments corresponding to the task (z.@1.", cl, S; M; e).

We instantiate the new environment maps as:

"= U{cdmH— (ZUZX)}
C=Cu{cmH (CUC)}

(1) The first obligation is to show that the result T’ of the evaluation step is well-typed with respect
to the environments ', C’, A’, and N’. By inversion on T-Taskset, the obligation then is to
show that all tasks in T” are well-typed. By the typing rule given in the premise of this lemma
and by inversion on T-Taskset, we can directly establish the well-typedness of the tasks in T.
Thus the only remaining obligation, is to show that the task that is updated by the rule D-Par-
DataConstructor-Join is well-typed. By inversion on T-Task, we need to show that the expression

it is evaluating is well-typed. Concretely, the proof obligation is:

0;x:;C;A;N +A";N";KI" 7 0T

where 7 = [71\, e, vj__I, (r, ic), VJTI, e, 7,,] We discharge this case by showing that 7 and v
have the same type. In order to establish this result, we first perform inversion on the typing
judgement given in the premise of this lemma, and then on T-Taskset and T-Task, to obtain a
result that K I” v is well-typed. Since V' is obtained by replacing the j* value in v, namely
(r,ivar x;), with the value (r, ic), if the values (r, ivar x;) and (r, i), are of the same type, then
v and ¥ should also have the same type. By performing inversion on the well-formedness of the
task set given in the premise of this lemma, and then applying the rule WF 3.2.5.1;1, we establish
that there is exactly one task in the task set which supplies a well-typed value for ivar x;. Thus,

(r, i) must have the same type as (r, ivar x;), and thus this case.
(2) The second obligation is to show that the result of the evaluation step is well-formed. The individ-
ual requirements, labeled WF 3.2.5.1;1 - WF 3.2.5.1;2, are handled by the following case analysis.
e Case (WF 3.2.5.1;1): for each ivar (r, ivar x) in the result T, there exists exactly one task in

T’ which supplies a well-typed value for it

By inversion on the well-formedness of the task set given in the premise of this lemma, this
already holds for all ivar in T. Since D-LetLoc-After-NewReg doesn’t introduce any new

ivars, this case discharges straightforwardly.

124

B. TYPE-SAFETY PROOF FOR LoCalP?"

e Case (WF3.25.1;2): X, C;A’; N'; TV Fawf S M
By inversion on the well-formedness of the task set given in the premise of this lemma, we
establish that all tasks in the task set T are well formed. By applying WF 3.2.5.1;2, we obtain

the following:
2 CGAN;T Fyr M; S
20 Ce; Aes Ne; T |'Wf Mc; Se

The proof obligation is to show that the store 5" is well-formed with respect to the location
map M’, and the environments X', C’, A’, and N’, where M’ = MergeM(M, M_.). To discharge
this case, we perform a case analysis on the definition of MergeM.
- Case 1:
(U= (i) [(M= (rni)) e M, (I"' = (riz) € Me, iy = iy }
Identitical entries in M and M, remain unchanged in the merged location map M’. For
such entries, this case holds straightforwardly by using Results (1) and (2).
- Case 2:
{I'scd|(I'>c)eMI"¢Mand{I"— cl|I"¢ M,(I" — cl) e M.}
Entries that are not shared in common by M and M, remain unchanged in the merged
location map M’. For such entries, this case holds straightforwardly by using Results (1)
and (2).
—Case3: {I"=>(r,j) | (I" > (r,ivar x)) e M, (I" > (r,j)) € M. }
When a location maps to an ivar in M, and to a concrete index in M., the merged
location map M’ keeps the concrete index and discards the ivar. To discharge this case,
we must show that even when the location map is thus updated, the store S is well-
formed. The individual requirements, labeled WF 3.2.5.2;1 - WF 3.2.5.2;4, are handled
by the following case analysis.
x Case (WF 3.2.5.2;1):
I'>1elk=
(i) = M(I) A3 {r, i1); S Few (1, 12)) @
({r,ivar x) = M(I") A
3s, My,e,- (7, {r, ivar x), Sy; My; e2) =

GetSingleWriter(T, 7, ivar x) A

125

B. TYPE-SAFETY PROOF FOR LoCalP?"

(riry = My(I") A
(IsVal(ez) = 51, i1); S2 Few (T i2)))
By inversion on Result (1), we know that WF 3.2.5.2;1 holds for S. And since (I" —
(r,ivar x)) € M, the second disjunct of WF 3.2.5.2;1 must hold. Since this I"
is being updated to map to a concrete index, in order to discharge this case we
must show that the first disjunct of WF 3.2.5.2;1 now holds for it. There are two
obligations: (r,j) = M/(I"), and 7; (r, j); S” Few (1, j»). Since the second disjunct of
WF 3.2.5.2;1 holds for the store S and location map M, we obtain the following:
(i) (r, ivar x) = M(I")
(ii) Js, Mye,- (7, (1, ivar x), Sp; M; €3) =
GetSingleWriter(T, 7, ivar x)
(i) (r, i1) = Mo (I)
(iv) IsVal(es) = 7;(r,i1); S2 Few (1, i2)
By applying WF 3.2.5.1;1, we can establish that there is exactly one task in T that
can provide a well-typed value for an ivar. Thus, the task being merged by D-Par-
DataConstructor-Join must be this unique task. As a result, the location map M,
store S,, and expression e, must be the same as M,, S;, and (r, i.). Thus, we obtain:
W) (1) = Me(I)
(vi) IsVal({r, ic)) = 73(1, j}; Sc Few (1. J2)
The first obligation, (r,j) = M’(I"), discharges by inspection on MergeM, which
inserts the mapping (I" — (r,j)) in M’. The second obligation, 7;(r,j);S” Few
(r,j2), discharges since
IsVal({r, ic)) is true, and the store S” contains all the allocations performed in S,.
Thus, this case.
WF 3.25.2;2 C Fawfpes S’
o Case (WF 3.2.5.3;1):
(I'>startr)eC= "> <(r,0)) eM
Since the address of a location at the start of a region cannot be an ivar, this case
discharges trivially.
o Case (WF 3.2.5.3;2):
(I'>startr)eC= "> <(r,0)) eM

126

B. TYPE-SAFETY PROOF FOR LoCalP?"

Since the address of a location one past the start of a region cannot be an ivar,
this case discharges trivially.

Case (WF 3.2.5.3;3):

(I"— afterr@!'") e C=

((roir) = M(I) AT in)s S bew (ri2) A (r i) = M(IN) &

((ryivar x;) = M(I") A (I' = (r,&(r;,0))) e MA{r, > h} €S) ®

((rin) = M) A5 ()5S Few (ryi2) A (I7 9 (1, &(13,0))) € M A S(r)(ip) =
&(r2,0))

By inversion on Result (1), we know that WF 3.2.5.3;3 holds for S. And since
(I" — (r,ivar x)) € M, the second disjunct of WF 3.2.5.3;3 must hold. But if
I" is being updated to map to a concrete index instead of an ivar by the merge,
and since this case looks at state of the machine after a merge, we must show
that the third disjunct of WF 3.2.5.3;3 now holds in order to discharge this case.
There are three obligations:

o (nj) = M(1)

This obligation discharges straightforwardly by the premise of this case, and by
inspection of MergeM, which updates I" to map to a concrete index instead of an
ivar.

® 7;(r,j); S Few (1 j2)

By Result 2, we get Z; C; A;N; T k¢ M; Se. And since (I" = (r,j)), the first
disjunct of WF 3.2.5.2;1 must hold. The only precondition of WF 3.2.5.2;1, (I" —
7) € X, discharges straightforwardly by inversion on T-LetLoc-After, which is
the only rule that adds a constraint (l;" +— after r@I") to C. Thus, we get
7; {1, j); Sc Few (7, Jj2). Since the S” contains all the allocations performed in S,
7;{r, j); S Few (1, jo) must hold as well.

o« (7 (rj)) € MV

(S"(r)(J2) = &(r2,j3) A (L7 = (1, &(r2,J3))) € M)

We can discharge this case by showing that the second disjunct holds. There are
two obligations: S (r)(j2) = &(rs, j3), and (I;" +— (r, &(r2,j3))) € M’. The first
obligation discharges by inspecting the definition of LinkFields, which writes

the appropriate indirection to the store. To discharge the second obligation,

127

B. TYPE-SAFETY PROOF FOR LoCalP?"

we perform inversion on Result 1. By inversion, we know that WF 3.2.5.3;3
must hold for M. And since (I" +— (r,ivar x)) € M, the second disjunct of
WEF 3.2.5.3;3 must hold for M. Thus, we get (I;" — (r,&(rs,j3))) € M. Since M’
contains this mapping from M, (" — (r,&(r,, j3))) € M’ holds as well.

o Case X;C; AN T ko { = () | (M= (rj)) € M, (I" = (r,ivar x)) €
M. }; 8"
This case is identical to the previous one.

* Case WF 3.2.5.2;3

The individual requirements, labeled WF 3.2.5.4;1 - WF 3.2.5.4;4, are handled by

the following case analysis.

o Case (WF 3.2.5.4;1):
(r>l"YeAANl"eN)=
((I' > (r,i)) e M' Ai > Maxldx(r,S)) & (I" — &(rp, ip)) € M’
By the well-formedness of the store given in the premise of this lemma, the above
already holds for locations in the environments A and N. This case discharges
straightforwardly by using Results (1) and (2) since D-Par-DataConstructor-Join
doesn’t introduce any new locations in A and N.

o Case (WF 3.2.5.4;2)
(r>1)e AN (ri)y =MI)YAT & N A 1:(r,is); S Few (1 ic)) = ic >
MaxIdx(r, S)
By inversion on T-DataConstructor-Ivars, I” € N’, and thus this case discharges
immediately.

o Case (WF 3.2.5.4;3):
FeN = rid)=MI)A(r— (i~ K) ¢S
By the well-formedness of the store given in the premise of this lemma, the above
already holds for all locations in N. This case discharges straightforwardly by
using Results (1) and (2) since D-Par-DataConstructor-Join doesn’t introduce
any new locations in N.

o WF 3.2.5.4;4:
(re0)eA=(r—>0)eS

128

B. TYPE-SAFETY PROOF FOR LoCalP?"

This case discharges because, from the premise of the lemma, this property holds
for the original environment A and store S, and, by inversion on
T-DataConstructor-Ivars, continues to hold for A’ and §’.
* Case (WF 3.2.5.2;4): dom(X) NN =0
This case discharges because, from the premise of the lemma, this property holds
for the original environments N and X, and, by inversion on T-DataConstructor,

continues to hold for N and X.
Case: D-Par-Case-Join

[D-PAR-CASE-JOIN]
Ty s Tey ooy Tn =1p Thy o, T, . T,
where
T, = (7, cle, Sc; Mg e.); e. = case (r,ivar xc)lc of ﬁ
T, e{T,...Tn} = (1,@L,", (r, ivar xc), Sp; Mp; (1, ip))
Ms = MergeM(M,, M.); S3 = MergeS(S,, Sc)

e, = case (r, ip>lP of ﬁ[ip/ivar x]; T, = (%, cle, S3; Ms; €)

This case can be proved using similar reasoning as D-Par-DataConstructor-Join.
Case: D-Par-Step

[D-PAR-STEP]
SM;e= S;M;¢é

Ty, ... (7, cl, S Mse), .. Ty, =y Th, ., (T, S5 M5 €), . Ty
Let X = (cl), C = C(cl), A = A(cl), and N = A(cl) be the environments corresponding to the task

(7, cl, S; M; e). We instantiate the new environment maps as:

"= ;C=C
By inversion on 3.2.5.1, the two obligations are to show that the resulting T’ is well typed, and that the
stores of all tasks in it are well formed. By the typing rule given in the premise of this lemma and by
inversion on T-Taskset, we can directly establish the well-typedness of the tasks in T. Using similar rea-
soning, we establish that the stores of all tasks in T are well-formed. Thus, there are only two remaining

obligations, namely to show that the task resulting from the sequential step is well-typed, and that its store

is well-formed. And by inversion on T-Task, in order to show that a task is well-typed, we must show that

129

B. TYPE-SAFETY PROOF FOR LoCalP?"

the expression it is evaluating is well-typed. Thus, there are two obligations that we must prove, namely
0;X;C"; AN+ A”;N”; ¢ 2 7, and X5 C A N M ke S’ We can discharge both of these by using
Lemma B.2.5 for single thread preservation. There are three preconditions in order to use this lemma,
which are handled by the following case analysis.
(1) 0;X,CANFA;Ne: 7
By inversion on T-Taskset, and the typing rule given in the premise of this lemma, we know
that all tasks in the task set T are well-typed. Thus, we obtain the result
2 C AN Fygsr A N7 (7, cl, S; M; e). Then, by inversion on T-Task, we obtain the result that the
expression e is also well-typed. Thus, this obligation is discharged.
(2) Z;CGAN; M byp S
By the well-formedness of the task set given in the premise of this lemma, we establish the
well-formedness of stores of all tasks in the task set T, and we obtain the result X; C; A;N; T +,,f
S; M, thus discharging this obligation.
(3) S;M;e= S'; M'; e

This obligation discharges straightforwardly by inversion on D-Par-Step.

|
LeMmma B.2.5 (Single Thread Preservation).
If 0;3,C;AN+A;Ne: 7
and X;C;A;N; M Fawf S
and S;M;e = S';M’; ¢
then for some X' 2 X,C’ 2 C,
0;X;C;A;N +A";N";¢ : ¢
and X';C; AN M v S5
Proof: The proof is by induction on the given derivation of the dynamic semantics.

Case: D-LetLoc-After-NewReg

[D-LETLOC-AFTER-NEWREG]
S;M;letloc I”' = after t@l)" ine= S'; M’;e
where (r,ivar x)% = M(l,");r’ fresh
S=8SU{rr—=>0}; M =MU{l'> (r,&(',0))}

130

B. TYPE-SAFETY PROOF FOR LoCalP®
(1) The first obligation is to show that the result of the evaluation step is well-typed, that is
0;>;C;A ;N v A”;N";¢ : 7,
where 7 = t@0'" . This proof obligation follows straightforwardly by inversion on T-LetLoc-After.
(2) The second obligation is to show that the result of the evaluation step is well-formed, that is
> C; AN T Fawf S M
The individual requirements, labeled
WF 3.2.5.2;1 WF 3.2.5.2;4, are handled by the following case analysis.
e Case (WF 3.2.5.2;1):
I'>1)ek=
((ry i) = M(I') A5 (1 i1)5 S Few (1, i2)) @
((r,ivar x) = M(I") A
g e (7, (r,ivar x),5; M’; ') = GetSingleWriter(T, 7, ivar x) A
(riry = M/(I) A
(IsVal(e) = ;(r,i1); S Few (1, i2)))
By the well-formedness of the store given in the premise of this lemma, the above already
holds for all locations in the location environment M. The obligation discharges by inspecting
the only new location in M’, namely [", which is fresh and therefore cannot be in the domain
of 2.
o Case (WF3.2.5.2;2): C' byyp 35
Of the requirements for this judgement, the only one that is not satisfied immediately by the
well-formedness of the store given in the premise of the lemma is requirement WF 3.2.5.3;3.
The specific requirement is to establish that:
(I' > afterr@!'") e C=
((roin) = M) AT (r in)s S Few (ria) A (r i) = M(I) @
((r,ivar x;) = M(I'") A (I = (r,&(r2,0))) e MA{r, > h} € S) ®
((rin) = M) AT i) S Few (ryi2) A (I (1, &(12,0))) € M A S(r) (i) = &(12,0))
The second disjunct follows immediately by inversion on D-LetLoc-After-NewReg.
e Case (WF3.2.5.2;3): AsN' by, M'; S
The individual requirements, labeled WF 3.2.5.4;1 - WF 3.2.5.4;4, are handled by the following

case analysis.

131

B. TYPE-SAFETY PROOF FOR LoCalP?"

— Case Case (WF 3.2.5.4;1):
(re>l"YeAAl"eN) >
("> (r,i)) e M Ai> Maxldx(r,S)) ® (I — &(rp,i2)) € M’
By the well-formedness of the store given in the premise of this lemma, the above
already holds for locations in the environments A and N. The obligation discharges
by inspecting the only new location added to environments, namely I". The second
disjunct, namely (I" — &(ry, ip)) € M’, follows immediately by inversion on D-LetLoc-
After-NewReg.

— Case (WF 3.2.5.4;2)
(r> I eAN(ri)=MI)YATI ¢ NA T{r,is);S Few (1, i) = i > Maxldx(r, S)
By inversion on T-LetLoc-After, I” € N’, and thus this case discharges immediately.

— Case (WF 3.2.5.4;3):
FeN = ri)=MI)A(r— (i~ K) ¢S
Both conjuncts discharge immediately by inversion on D-LetLoc-After-NewReg. Since
(I" > &(r,0)) € M’, we obtain (r,0) = M, thus satisfying the first obligation. And
since r’ is fresh, (' — (0 — K)) ¢ S’ holds as well, thus discharging this case.

- Case (WF3.2544): (r—>0)eA=(r>0)€S
This case discharges because, from the premise of the lemma, this property holds for
the original environment A and store S, and, by inversion on T-LetLoc-After, continues
to hold for A" and §'.

e Case (WF 3.2.5.2;4): dom(X)NN =0
Because it is a bound location, | ¢ dom(X), and by inversion on T-LetLoc-After [€ N, which

discharges this obligation.

Case:
The cases for D-Let-Expr, D-Let-Val, D-LetRegion, D-LetLoc-Tag, D-LetLoc-Start, D-LetLoc-After, and D-

App are similar to the proof of preservation for sequential LoCal given in [65].

132

Chaitanya Sunil Koparkar

Luddy Hall, Indiana University, Bloomington, IN
Email: ckoparkar@gmail.com GitHub: github.com/ckoparkar

Research Interests

Programming language design and implementation, program optimization, parallelism and compilers. My research
focuses on developing programming language constructs and execution strategies that enable a compiler to improve
the run time performance of a program in an automatic and safe manner.

Education

= Indiana University, Luddy School of Informatics, Computing, and Engineering, 2017-2023

= Ph.D. Computer Science, June 2023.
Dissertation: Mostly-serialized Data Structures for Parallel and General-purpose Programming.

* Indiana University, Luddy School of Informatics, Computing, and Engineering, 20162023
= M.S. Computer Science, February 2023.
= University of Mumbai, India, 2010-2014

= B.E. Information Technology, May 2014.

Employment History

= The MathWorks, Natick, MA

= Senior Software Engineer, June 2023—-present.

= As part of the Semantic Driven Optimization team, I work on optimizing the Simulink compiler.
= Indiana University, Bloomington, IN

= Research Assistant, Newton Lab, August 2017-May 2023.

= I do research at the intersection of programming language design and program optimization. My primary
project has explored a new approach to one of the fundamental tasks in computing—how to represent
data in memory. By eschewing the traditional pointer-based approaches, our Gibbon compiler can pack
data into a compact, pointer-free form in memory that jells with modern CPU architectures, producing
significant performance improvements. Most recently, I worked on reconciling this dense memory repre-
sentation with parallel execution, allowing programs to obtain the benefits of both. Since then, I've been
developing an efficient garbage collector for Gibbon.

* Cloudseal (acquired by Meta), Bloomington, IN
= SDE Intern, May-August 2019.

= As an intern in a very early stage startup, I helped in implementing Cloudseal’s reproducible containers
technology. A video demonstrating some features of the product is available on YouTube (link). All of
Cloudseal’s codebase was written in Rust.

= Amazon, Seattle, WA
= SDE Intern, May-July 2017.

= Asan intern in the Retail Systems division, I designed and implemented a new shopping experience (UI/UX
& server APY’s) for creating digital dash buttons.

= Helpshift, Pune, India

= Software Artisan, February—June 2016.

= As a member of the backend team, I worked on different parts of a SOA architecture, developed using
Clojure. I wrote a library to distribute thunks of ‘work® over a cluster of nodes, which was primarily used
for distributed load testing, like Tsung. I was also one of the maintainers of a publish-subscribe messaging
system which handled live updates and notifications across millions of devices.

= TinyOwl (acquired by Zomato), Mumbai, India

= Software Developer, April 2015-January 2016.

= As a member of the backend team, I worked on various things — developing server API’s, handling app
deployments etc. I was part of a team that implemented a restaurant recommendation engine which in-
creased the overall daily orders by 26%. I also wrote a web service in Go which served as a low latency
ingress point for the data analytics pipeline.

= Canopy Cloud - Atos, Mumbai, India

= Software Developer, June 2014-April 2015.
= Developed and deployed CloudFabric, a PAAS offering powered by Cloud Foundry.

Conference Publications

= Chaitanya Koparkar, Laith Sakka, Michael Vollmer, Vidush Singhal, Sam Tobin-Hochstadt, Ryan R. Newton,
Milind Kulkarni.
Deforestation for Some Non-Linear Functions.
Unpublished draft.

= Chaitanya Koparkar, Vidush Singhal, Aditya Gupta, Mike Rainey, Michael Vollmer, Sam Tobin-Hochstadlt,
Milind Kulkarni, Ryan R. Newton.
Garbage Collection for Mostly-Serialized Heaps.
Under submission.

= Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind Kulkarni, Ryan R. Newton.
Efficient Tree-Traversals: Reconciling Parallelism and Dense Representations (PDF).
ICFP 2021 (33%).

Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni, Ryan R. Newton.
LoCal: A Language for Programs Operating on Serialized Data (PDF).
PLDI 2019 (27%).

Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka, Chaitanya Koparkar, Milind Kulkarni, Sam
Tobin-Hochstadt, Ryan R. Newton.

Compiling Tree Transforms to Operate on Packed Representations (PDF).

ECOOP 2017 (33%).

Technical Reports

= Chaitanya Koparkar.
Efficient Data Representation Using FlatBuffers (PDF).
ACM XRDS, 2023.

= Chaitanya Koparkar.
A primer on pointer tagging (PDF).
ACM XRDS, 2023.

= Chaitanya Koparkar.

Making GHC whole again or, how to perform whole-program analysis within GHC (PDF).
ACM XRDS, 2022.

= Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind Kulkarni and Ryan R. Newton.
Extended Version of “Efficient Tree-Traversals: Reconciling Parallelism and Dense Representations” (PDF).
arXiv, 2021.

= Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni, Ryan R. Newton.
Extended Version of “LoCal: A Language for Programs Operating on Serialized Data” (PDF).
Indiana University, 2019

Talks

= Parallel Gibbon: High performance Haskell compilation!

= Invited talk, Grosser Lab at University of Edinburgh, Virtual. October 11, 2021.
= Invited talk, JetBrains Research Lab at St. Petersburg State University, Virtual. October 18, 2021.

= Invited talk, PurPL Seminar at Purdue University, Virtual. October 29, 2021.
= Efficient Tree-Traversals: Reconciling Parallelism and Dense Representations.

= ICFP 2021, Virtual. August 23, 2021.

= SIGPLAN papers track at SPLASH, Chicago, IL. October 22, 2021.
= Parallelism in (mostly) Serialized Heaps.

= IFL, Virtual. September 2, 2020.
= An Efficient Compiler for Recursive Functions on Mostly Serialized Data.

= FHPC, St. Louis, MO. September 29, 2018.
= PL Wonks, Indiana University, Bloomington, IN. September 21, 2018.

Teaching

= Associate Instructor, Indiana University

= Spring 2023: CSCI P-536 Advanced Operating Systems.

Fall 2022: CSCI B-629 Topics in PL: Advanced Functional Programming.
Fall 2022: CSCI P-523 Compilers.

= Spring 2022: CSCI P-536 Advanced Operating Systems.

Fall 2021: CSCI B-544 Security For Networked Systems.

= Spring 2018: CSCI B-629 Topics in PL: Dependent Types.

Service

= Department Editor: Hello World, ACM XRDS. 2022-present.

= Program Committees:
= ECOQP 2022, external review committee.
= Artifact Evaluation Committees:

= ECOOP 2022.
ESOP 2022.
POPL 2021.
ECOQP 2021.
PLDI 2021.

= PLDI 2020.
= ICFP 2018.

Technical Skills

Proficient in Haskell and C. Productive with C++, Rust, Standard ML, OCaml, and Nix. Familiar with many others.

ProQuest Number: 30529221

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality
and completeness of the copy made available to ProQuest.

ProQQuest.
/ \

Distributed by ProQuest LLC (2023).
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata
associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106 - 1346 USA

