LoCal: A Language for Programs Operating on
Serialized Data*

Extended version

Michael Vollmer
Computer Science
Indiana University
Bloomington, Indiana, United
States
vollmerm@indiana.edu

Laith Sakka
Electrical and Computer
Engineering
Purdue University
West Lafayette, Indiana, United
States
Isakka@purdue.edu

Abstract

In a typical data-processing program, the representation
of data in memory is distinct from its representation in
a serialized form on disk. The former has pointers and
arbitrary, sparse layout, facilitating easy manipulation
by a program, while the latter is packed contiguously,
facilitating easy 1/0O. We propose a language, LoCal, to
unify in-memory and serialized formats. LoCal extends
a region calculus into a location calculus, employing a
type system that tracks the byte-addressed layout of all
heap values. We formalize LoCal and prove type safety,
and show how LoCal programs can be inferred from
unannotated source terms.

We transform the existing Gibbon compiler to use
LoCal as an intermediate language, with the goal of
achieving a balance between code speed and data com-
pactness by introducing just enough indirection into
heap layouts, preserving the asymptotic complexity of
traditional representations, but working with mostly or
completely serialized data. We show that our approach
yields significant performance improvement over prior
approaches to operating on packed data, without aban-
doning idiomatic programming with recursive functions.

Keywords Region Calculus, Compiler Optimization,
Data Encoding, Tree Traversal

1 Introduction

Virtually all programs running today use heap object
representations fized by the language runtime system.

*Extended version of “LoCal: A Language for Programs Operating
on Serialized Data,” Vollmer et al., PLDI 2019[29].

Chaitanya Koparkar
Computer Science
Indiana University

Bloomington, Indiana, United
States
ckoparka@indiana.edu

Milind Kulkarni
Electrical and Computer
Engineering
Purdue University
West Lafayette, Indiana, United
States
milind@purdue.edu

Mike Rainey
Computer Science
Indiana University

Bloomington, Indiana, United
States
me@mike-rainey.site

Ryan R. Newton
Computer Science
Indiana University
Bloomington, Indiana, United
States
rrnewton@indiana.edu

For instance, the Java or Haskell runtimes dictate an
object layout, and the compiler must stick to it for all
programs. And yet when humans optimize a program,
one of their primary levers on performance is changing
data representation. For example, an HPC programmer
knows how to pack a regular tree into a byte array for
more efficient access [8, 14, 16].

Whenever a program receives data from the network or
disk, rigid insistence on a particular heap layout causes
an impedance mismatch we know as deserialization. Yet,
the alternative would seem to be writing low-level code
to deal directly with specialized or serialized data layouts.
This is error-prone, making it a “hacky” way to achieve
performance optimization at the expense of safety and
readability.

To ameliorate this tension we propose to reify data
layout as an explicit part of the program. We introduce
a language, LoCal (which stands for location calculus),
whose type system directly encodes a byte-level layout for
algebraic datatypes manipulated by the language. A well-
typed program consists of functions, data definitions, and
data representation choices, which can then be tailored
to an application. This means that programs can operate
over densely encoded (serialized) data in a type-safe way.

If data resides on disk in a LoCal-compatible format,
it becomes possible to bring the program to the data
rather than the traditional approach of bending the data
to the code: deserializing it to match the rigid heap
format of the language runtime. This effort contrasts
with earlier work on persistent languages [2, 13] and
object databases [10], which sought to expand the muta-
ble heap to encompass disk as well memory, translating
(swizzling) between persistent pointers and in-memory

pointers. Instead, the emphasis here is on processing im-
mutable data, and eschewing pointers entirely wherever
possible.

The layout of a LoCal data constructor by default
takes only one (unaligned) byte in memory and fields
may be referred to either by pointer indirections or
unboxed into the parent object (serialized). We can thus
interpolate between fully serialized and fully pointer-
based representations. LoCal can thus serve as a flexible
intermediate representation for compilers or synthesis
tools.

This paper makes four contributions:

e We introduce LoCal, the first formal language
where well-typed terms prescribe the byte-addressed
data-layout of the recursive datatypes they manip-
ulate (§3). We formalize the core of the language
and prove type safety (progress and preservation).

e We present an implementation strategy and com-
piler for LoCal (§4). By judicious use of indirec-
tions, it represents the first technique for com-
piling recursive functions on (mostly) serialized
data which is work efficient, not compromising
asymptotic complexity compared to a traditional
language implementation.

e We present a strategy for synthesizing LoCal pro-
grams from a first-order, purely-functional input
language, HiCal (the front-end for our Gibbon com-
piler), and redesign our compiler around LoCal
(85).

o We evaluate our compiler pipeline against approaches
for working with serialized binary data, including
Compact Normal Form [33], Cap’N Proto, and prior
Gibbon [30] (§7). Our pipeline achieves 3.2x, 9.4x,
and 202x geomean speedups respectively (Table 2),
including asymptotic advantages, and substantial
speedups in IO-intensive experiments.

2 Background
Consider a simple tree data structure, written in a lan-
guage that supports algebraic datatypes:

data Tree = Leaf Int \ Node Tree Tree

In memory, each node in this tree is either a Leaf node,
typically consisting of a header word (denoting that it
is a Leaf) and another word holding the integer data,
or an interior Node, consisting of a header word and two
double words (on a 64-bit system) holding pointers to its
children. A tree with 2 internal nodes and 3 leaf nodes,
then, occupies 64 bytes of space (20 bytes per internal
node and 8 bytes per leaf node), even though it contains
only 12 bytes of “useful” data. Storing the pointers that
maintain the internal structure of the tree represents a
significant storage overhead.

int sumPacked (byte * &ptr) {
int ret = 0
if (* ptr == LEAF) {
ptr++; //skip past tag
ret = * (intx*)ptr; //retrieve integer
ptr += sizeof (int); //skip past integer
} else { //tagis INTERNAL
ptr++; //skip past tag
ret += sumPacked(ptr);
ret += sumPacked(ptr);
}
return ret;

}

Figure 1. A low-level traversal of serialized tree data.

When relying on the usual pointer-based representa-
tion, this data can be readily traversed using standard
idioms to perform computations such as summing all
the leaf values:

sum t = case t of
Leaf n - n

Node x y — (sum x) + (sum y)

But when represented on disk or sent over the wire,
the same tree structure would not preserve pointers
from a node to its children. Instead, the tree would
be serialized, with the Nodes and Leafs of the tree laid
out in a buffer in some sequential order. For example,
the tree could be linearized in a left-to-right preorder,
containing tags to mark data constructors and atomic
fields such as integers, but ditching the pointers. Because
it contains no pointers, this serialized representation is
significantly more compact. But without this structural
information, in most settings the pre-order serialization
would be deserialized prior to processing, requiring more
code than the simple sum function above.

However, this deserialization is not necessary—it is
perfectly possible to write code that performs the same
sum operation directly on the serialized representation. All
that is necessary is for the code to visit every node in the
tree, skipping over tags and Node data, and accumulating
leaves into the sum. This traversal can be accomplished
in existing languages, writing low-level buffer-processing
code as in the C++ code shown in Fig. 1.

Essentially, this code operates as follows: ptr scans
along the packed data structure. For each node type it
encounters, it continues scanning through the node, re-
trieving the data it needs from the packed representation
(in the case of Leafs, the integer, in the case of Nodes, noth-
ing) and performing the necessary computation. Because
this serialized representation is already in left-to-right
preorder, no pointer-like accesses are necessary: scanning
sequentially through the buffer suffices to access all the
nodes of the tree. Note that the sumPacked function is

still recursive; the program stack helps capture the tree
structure of the data.

There are several advantages to working directly on se-
rialized data: the serialized representation can take many
times fewer bytes to represent than a normal pointer-
based representation; data can be traversed faster once
in memory due to predictable memory accesses; and
data can be read from disk without deserialization (e.g.
via mmap).

However, working directly with serialized data is not
always easy. First, programs written with typical pointer-
based representations benefit from standard techniques,
such as type checking, to help programmers avoid errors
while constructing traversals of their data structures (so,
e.g., type checking can prevent a programmer from read-
ing an integer value out of an interior node of the tree, or
from visiting the children of a leaf node). But operations
on serialized representations provide no such protection:
all of the data in the tree is packed into a flat buffer that
is traversed using cursors (ptr, in Fig. 1). Cursors need to
be manipulated carefully to visit the necessary portions
of the buffer—skipping over the sections that are not
needed—and read out the appropriate data, all without
the safety net of a type checker. Hence, writing code to
work directly on the serialized data can be tedious and
error-prone.

We propose instead to write the above example in a
language, LoCal, expressly designed to use dense serial-
izations for its values. The LoCal sum function extends
the simple functional one above with region and location
annotations:

sum : V I" . Tree @ [" — Int
sum [["] t = case t of
Leaf (n : Int @ [,”) - n
Node (a : Tree @Q [,") (b : Tree @ [;")

- (sum [I,"] a) + (sum [Il;"] b)

This code operates on serialized data, taking locations
of that data (input and output) as additional function
arguments. It is a region-polymorphic function that per-
forms a traversal within region r that contains serialized
data. Well-typedness ensures that it only reads memory
in a type-safe way. Location variables (I") have lexical
scopes and are introduced as function arguments and
pattern matches. For instance, in the above program,
we cannot access child node locations (I,",l,") until we
correctly parse the input data at [” and ascertain that
represents an intermediate node. Conversely, as we will
see, to construct data the type system must enforce that
adjacent fields be serialized consecutively.

Efficiency Using a type-safe language for serialized
data manipulation eliminates correctness risks, but ef-
ficiency risks remain. As a simple example, consider
taking the rightmost leaf of the same tree datatype:

rightmost : V [” . Tree @[— Int
rightmost [I"] tr =
case tr of
Leaf (n : Int @[,”) - n
Node (a : Tree Q [,") (b : Tree @Q [}") —
rightmost [[,"] b
Here, operating on the fully serialized data represen-

tation is more expensive than operating on the pointer-
based representation (linear instead of logarithmic). The
reason is, in the fully serialized representation, the only
way to access a particular field in a structure is to scan
past all of the data that has been serialized before it.

Indirections and Random-access: One solution to
this problem is to preserve some amount of indirection in-
formation (such as the size, in bytes, of the left subtree of
each interior node). There has been substantial research
in producing efficient layouts that preserve pointer in-
formation to allow easy traversal of recursive structures
but still retain the locality benefits of linearized repre-
sentations [5, 6, 11, 27] and such layouts are common in
high-performance computing settings [8, 14, 16, 21, 22].
Unfortunately keeping pointer or indirection information
in the linearized layout sacrifices some of the benefits
of the serialized representation, and may not always be
necessary. Indeed, it seems that there are two options
in the design space: a fully-packed layout that eschews
pointers entirely, but is specialized to specific traversal
patterns, or a linearized order that pays the overhead of
preserving pointer information in order to support arbi-
trary access patterns. But is there a way to interpolate
between the two points in the design space? With LoCal,
the answer is “yes” and random access can be restored on
a per-data-constructor, per-field basis, without incurring
any global cost of fixed representation choices.

3 From a Region- to a
Location-Calculus

LoCal follows in the tradition of typed assembly lan-
guage [18], region calculi [25], and Cyclone [9] in that it
uses types to both expose and make safe low-level imple-
mentation mechanisms. The basic idea of LoCal is to first
establish what data share which logical memory regions
(essentially, buffers), and in what order those data reside,
abstracting the details of computing exact addresses. For
example, data constructor applications, such as Leaf 3,
take an extra location argument in LoCal, specifying
where the data constructor should place the resulting
value in memory: Leaf [3. This location becomes part of
type of the value: Tree@l. Every location resides in a
region, and when we want to name that region, we write
.

Locations represent information about where values
are in a store, but are less flexible than pointers. They

are introduced relative to other locations. A location
variable is either after another variable, or it is at the
beginning of a region, thus specifying a serial order. If
location [5 is declared as Iy = after(Tree@l;"), then Iy is
after every element of the tree rooted at [y.

Regions in LoCal represent the memory buffers con-
taining serialized data structures. Unlike some other
region calculi, in LoCal, values in a region may escape
the static scope which binds and allocates that region.
In fact, an extension introduced later in §3.4 specifically
relies on inter-region pointers and coarse-grained garbage
collection of regions.

LoCal is a first-order, call-by-value functional lan-
guage with algebraic datatypes and pattern matching.
Programs consist of a series of datatype definitions, func-
tion definitions, and a main expression. LoCal programs
can be written directly by hand, and LoCal also serves
as a practical intermediate language for other tools or
front-ends that want to convert computations to run on
serialized data (essentially fusing a consuming recursion
with the deserialization loop). We return to this use-case
in §5.

Allocating to output regions Now that we have seen
how data constructor applications are parameterized by
locations, let us look at a more complex example than
those of the prior section. Consider buildtree, which
constructs the same trees consumed by sum and rightmost
above. First, in the source language without locations:

buildtree Int — Tree
buildtree n = if n ==
then Leaf 1
else Node (buildtree (n - 1))

(buildtree (n - 1))

Then in LoCal, where the type scheme binds an output
rather than input location:

buildtree : V [” Int — Tree @ ["
buildtree [I"] n =
if n == 0 then (Leaf [" 1) —— write tag + int to
output
else —— skip past tag:
letloc Ig" = 1" + 1 in
—— build left in place:
let left : Tree Q [,” =
buildtree [l,"] (n - 1) in
—— find start of right:

letloc " = after(Tree @ [,") in
—— build right in place:
let right : Tree Q [" =

buildtree [l;"] (n - 1) in
—— write datacon tag, connecting things together:
(Node [I" left right)

Here, we see that LoCal must represent locations that
have not yet been written, i.e., they are output destina-
tions. Nevertheless, in the recursive calls of buildtree this

location is passed as an argument: a form of destination-
passing style [23]. The type system guarantees that mem-
ory will be initialized and written exactly once. The out-
put location is threaded through the recursion to build
the left subtree, and then offset to compute the starting
location of the right subtree. It might appear that com-
puting after(Tree@l,”) could be quite expensive, if there
is a large tree at that location. This does not need to be
the case. In §4 we will present different techniques for
efficiently compiling LoCal programs without requiring
linear walks through serialized data.

One of the goals of LoCal is to support several com-
pilation strategies. One extreme is compiling programs
to work with a representation of data structures that
do not include any pointers or indirections at run-time—
within such a representation, the size of a value can be
observed by threading through “end witnesses” while
consuming packed values: for example, buildtree above
would return I,", rather than computing it with an after
operation. (The end-witness strategy was already at use
in Gibbon [30], which previously compiled functions on
fully serialized data, while not preserving asymptotic
complexity.) Next, we will present a formalized core
subset of LoCal, its type system (§3.2), and operational
semantics (§3.3), before moving on to implementation
(84, §5) and evaluation (§7).

3.1 Formal Language and Grammar

Fig. 2 gives the grammar for a formalized core of LoCal.
We use the notation 7 to denote a vector [x1,...,2,],
and T; the item at position i. To simplify presentation,
the language supports algebraic datatypes without any
base primitive types, but could be extended in a straight-
forward manner to represent primitives such as an Int
type or tuples. The expression language is based on the
first-order lambda calculus, using A-normal form. The
use of A-normal form simplifies our formalism and proofs
without loss of generality.

Like previous work on region-based memory [26], Lo-
Cal has a special binding form for introducing region
variables, written as letregion. Location variables are
similarly introduced by letloc. The pattern-matching
form case binds variables to serialized values, as well as
binding the location for each variable. We require that
each bound location in a source program is unique.

The letloc expression binds locations in only three
ways: a location is either the start of a region (meaning,
the location corresponds to the very beginning of that
region), is immediately after another location, or it oc-
curs after the last position occupied by some previously
allocated data constructor. For the last case, the location
is written to exist at (after 7@I["), where [is already
bound in a region, and has a value written to it.

K € Data Constructors, 7€ Type Constructors,
x,y, f € Variables, [,1" ¢ Symbolic Locations,

r € Regions, 7,5 € Region Indices,

(r,i)l ¢ Concrete Locations

Top-Level Programs top := Ii ;f?l ;e

Datatype Declarations dd :=datat=K T

Function Declarations fd == f:ts;fz =e
Located Types 7 ou=7Q["
Type Scheme ts = VF'? - T
Values v u=zx|(r, i)lr
Expressions e u=w
FaUSE
|K1" v

|letz:7=eine

| letloc " =leine

| letregion r ine

| case v of pat
=K (:1?—7':) - e
:= (start r)

| (I"+1)

| (after 7)

Pattern pat

Location Expressions le

Figure 2. Grammar of LoCal

Values in LoCal are either (non-location) variables or
concrete locations. In contrast to bound location vari-
ables, concrete locations do not occur in source programs;
rather, they appear at runtime, created by the appli-
cation of a data constructor, which has the effect of
extending the store. Every application of a data con-
structor writes a tag to the store, and concrete locations
allow the program to navigate through it. To distinguish
between concrete locations and location variables in the
formalism, we refer to the latter as symbolic locations. A
concrete location is a tuple (r, i)’ consisting of a region,
an index, and symbolic location corresponding to its
binding site. The first two components are sufficient to
fully describe an address in the store.

3.2 Static Semantics

In Fig. 3, we extend the grammar with some extra details
necessary for describing the type system. The typing
rules for expressions in LoCal are given in Fig. 4, where
the rule form is as follows:

I:X,C;A;N+-A";N";e: 7

The five letters to the left of the turnstile are different
environments. I' is a standard typing environment. X' is

Typing Env. s= {17, oo T Te)
7l77;n HT’”}

e len)

r
Store Typing X == {[['H T, ...
Constraint Env. C == {I[* = leq, ..
Allocation Pointers A == {ri—ap1, ... ,7n > apn }
whereap=1"| @

{0}

Nursery N

Figure 3. Extended grammar of LoCal for static seman-
tics

a store-typing environment, which maps all materialized
symbolic locations to their types. That is, every location
in X' has been written and contains a value of type X'(I").
C' is a constraint environment, which keeps track of how
symbolic locations relate to each other. A maps each
region in scope to a location, and is used to symbolically
track the allocation and incremental construction of data
structures; A can be thought of as representing the focus
within a region of the computation. N is a nursery of all
symbolic locations that have been allocated, but not yet
written to. Locations are removed from N upon being
written to, as the purpose is to prevent multiple writes
to a location. Both A and N are threaded through the
typing rules, also occuring in the output (to the right of
the turnstile).

The T-VAR rule ensures that the variable is in scope,
and the symbolic location of the variable has been written
to. T-CONCRETE-LOC is very similar, and also just
ensures that the symbolic location has been written
to. T-LET is straightforward, but note that along with
I', it also extends X to signify that the location [has
materialized.

In T-LETREGION, extending A with an empty allo-
cation pointer brings the region r in scope, and also
indicates that a symbolic location has not yet been allo-
cated in this region.

There are three rules for introducing locations (T-
LETLOC-START (see Fig. 13 in the appendix), T-LETLOC-
TAG and T-LETLOC-AFTER), corresponding to three
ways of allocating a new location in a region. A new
location is either: at the start of a region, one cell after
an existing location, or after the data structure rooted at
an existing location. Introducing locations in this fashion
sets up an ordering on locations, and the typing rules
must ensure that the locations are used in a way that
is consistent with this intended ordering. To this end,
each such rule extends the constraint environment C
with a constraint that is based on how the location was
introduced, and N is extended to indicate that the new
location is in scope and unwritten.

[T-VAR]
r'(z)=rQl" XY =71
I';2:C;A; N~ A;N;z:7Q["

[T-CONCRETE-LOC]
r"Y)=1
I 2;C;A;N - Ay N; (ryd)' - r@l”

[T-LET]
I''2;C;A;N-A;N:ep:m@h™ 5™ eN llTlng'
'Y, C;A N - A";N",es : QL™ §L"™?eN

;X C;A; N+ A";N";let :Ti@QL"™ = e in e : @2
where I''=TU {z - QL™ b ¥ = EU{llrl)

[T-LETREGION]
2 C;A;N+A":N';e: T@l”J l'T’ eN
I';2;C;A; N+ A"; N';letregion rin e : T@l'rl
where A= Au{r— o}

[T-LETLOC-TAG]

Ay =17 1T eN UT¢N" el
;5,0 A N - A";N"; e: ar”
I;2,C;A;N - A";N";letloc " =(I"" +1) ine: T,/@l’””
where ' = Cu{l' =" +1)}; A =Au{r=1"}

N =Nu{l"}

[T-LETLOC-AFTER]
A(r)y=10h"
(LY =1 L"¢N "¢ N"
2, C AN - A";N" e T'@l'r,

el
" eN

I';;C;A; N+~ A"; N";1letloc " = (after 7@ ") ine: Far”

where C'= Cu{l"— (after7QL") }; A'=Au{r~1"};
N =Nu{l'}

[T-DATACONSTRUCTOR]
TypeOfCon(K) =1 TypeOfField (K ,1) = :Z
eN A(r)=l' ifn20
C)=U+1 Ol - (atter (L))
[;5,C; AN v AN @m0l
I Y:CANFA N K" v :rQl”
where A':ﬁu{rle}; N'=N-{I"}
n=|v|;iel={1,...,n};jel-{n}

else I”

Figure 4. Selected type-system rules for LoCal.

Additionally, the location-introduction rules use A to
ensure that a program must introduce locations in a cer-
tain pattern (corresponding to the left-to-right allocation
and computation of fields, as explained in §3.3). In A,

each region is mapped to either the right-most allocated
symbolic location in that region (if it is unwritten), or
to the symbolic location of the most recently material-
ized data structure. This mapping in A is used by the
typing rules to ensure that: (1) T-LETLOC-START may
only introduce a location at the start of a region once;
(2) T-LETLOC-TAG may only introduce a location if
an unwritten location has just been allocated in that
region (to correspond to the tag of some soon-to-be-built
data structure); and (3) T-LETLOC-AFTER may only
introduce a location if a data structure has just been
materialized at the end of the region, and the program-
mer wants to allocate after it. To attempt, for example,
to allocate the location of the right sub-tree of a binary
tree before materializing the left sub-tree would be a
type error. Each location-introduction rule also ensures
that the introduced location must be written to at some
point, by checking that it’s absent from the nursery after
evaluating the expression.

In order to type an application of a data constructor,
T-DATACONSTRUCTOR starts by ensuring that the tag
being written and all the fields have the correct type.
Along with that, the locations of all the fields of the
constructor must also match the expected constraints.
That is, the location of the first field should be imme-
diately after the constructor tag, and there should be
appropriate after constraints for other fields in the lo-
cation constraint environment. After the tag has been
written, the location [is removed from the nursery to
prevent multiple writes to a location. As mentioned
earlier, LoCal uses destination-passing style. To guaran-
tee destination-passing style, it suffices to ensure that
a function returns its value in a location passed from
its caller. The LoCal type system enforces this property
by using constraints of the form !’ # [in the premises
of the typing rules of the operations that introduce new
locations

As demonstrated by T-DATACONSTRUCTOR, the type
system enforces a particular ordering of writes to ensure
the resulting tree is serialized in a certain order. Some
interesting patterns are expressible with this restriction
(for example, writing or reading multiple serialized trees
in one function), and, as we will address shortly in §3.4,
LoCal is flexible enough to admit extensions that soften
this restriction and allow for programmers to make use
of more complicated memory layouts.

A simple demonstration of the type system is shown in
Table 1, which tracks how A, C, and N change after each
line in a simple expression that builds a binary tree with
leaf children. Introducing [at the top establishes that it
is at the beginning of r, A maps r to [, and N contains
[. The location for the left sub-tree, [,, is defined to be
+1 after it, which updates r to point to [, in A and adds
a constraint to C for [,. Actually constructing the Leaf

Table 1. Step-by-step example of type checking a simple
expression.

Code A c N
letloc " = r r
—~1 %} l
start (r) {T } { }
Letloc 17 = 7 4 1 {rel} L7 e 1m 1) 1.7}
let x : T Q" = r r r
a la la—1"+1 l
Leat L* 1 {frel} {lam1"+1} {i"}
letloc " = 1T {la" = 1"+1, 1T
after (T Q [,") {r o'} b = after(TQl,")} UL
let y : TQ[" = o 1T {la" = 1+1, "
Leaf [,” 2 {r o'} "~ after(TQl,")} sy
- A
Node I" x y {re1"} I, after(TQl,")} 9]
Store S u={r—h, ..., Tn—hn}
Heap h w={ir Ki, ... ,in—> Ky}
Location Map M == {I[* = (ri,01), ... , L™ = (10, 1n) }

Figure 5. Extended grammar of LoCal for dynamic
semantics
in the next line removes I, to N, because it has been
written to. Once [, has been written, the next line can
introduce a new location I, after it, which updates the
mapping in A and adds a new constraint to C'. Once
I, has been written and removed from N in the next
line, the final Node can be constructed, which expects
the constraints to establish that [is before [,, which is
before [,.

Additional rules (such as for function application, pat-
tern matching) are conventional and are in the Appen-
dix, D.2.

3.3 Dynamic Semantics

The dynamic semantics for expressions in LoCal are
given in Fig. 6, where the transition rule is as follows.

SiM;e=8":M"¢€

To model the behavior of reading and writing from an
indexed memory, we introduce the store, S. The store is
a map from regions to heaps, where each heap consists
of an array of cells, which contain store values (data
constructor tags). To bridge from symbolic to concrete
locations, we use the location map, M, which is a map
from symbolic to concrete locations.

Case expressions are treated by the D-Case rule. The
objective of the rule is to load the tag of the construc-
tor K located at (r,i) in the store and dispatch the
corresponding case. The expression produced by the
right-hand side of the rule is the body of the pattern, in
which all pattern-bound variables are replaced by the
concrete locations of the fields of the constructor K.

[D-DATACONSTRUCTOR]

—_

S MK 1" 0 =S8 M;(r,i)"
where S =Su{re (i~ K)}; (r,i)=M(U")

[D-LETLOC-START)]
S; M;letloc " = (start r) ine= S; M';e

where M'=Mu{l" ~ (r,0)}

[D-LETLOC-TAG]
S;M:letloc!"=1I""+1line= S; M';e

where M'= M u{I" (r,i+1)}; (r,i) = M)

[D-LETLOC-AFTER]

S; M;letloc I” = (after 7@QL ") ine= S; M';e

where M'=M u{1" ~ (r,j) }; (r,i) = M (L")
731, i) S Few (7.5)

[D-CASE]
S: M;case (r,i) of [...,K (z:7@Ql") > e,...]=>

S;M'se[(r,w)" 7]

where M'= M u{l] = (r,i+1),....07 = (r,wj) }
Tis(r i+ 1); S Few (1, w1)
7T+1\;<74a@)55'_ew <T7wj+1>

K=8()(@);je{l,...on-1}; n=z:7

Figure 6. Selected dynamic-semantics rules for LoCal.

The concrete locations of the fields are obtained by
the following process. If there is at least one field, then
its starting address is the position one cell after the
constructor tag. The starting addresses of subsequent
fields depend on the sizes of the trees stored in previous
fields.

A feature of LoCal is the flexibility it provides to pick
the serialization layout. Our formalism uses our end-
witness rule to abstract from different layout decisions.
Given a type T, a starting address (r, i), and store S,
the rule below asserts that address of the end witness is

(7, 7e).

Ti(7,15)5 S Few (T e)

Using this rule, the starting address of the second field
is obtained from the end witness of the first, the starting
address of the third from the end witness of the second,
and so on.

The allocation and finalization of a new constructor is
achieved by some sequence of transitions, starting with
the D-LetLoc-Tag rule, then involving some number
of transitions of the D-LetLoc-After rule, depending
on the number of fields of the constructor, and finally

ending with the D-DataConstructor transition. The D-
LetLoc-Tag rule allocates one cell for the tag of some
new constructor of a yet-to-be determined type, leaving
it to later to write to the new location. The resulting
configuration binds its [to the address (r, i + 1), that
is, the address one cell past given location I" at (r,1).
Fields that occur after the first are allocated by the
D-LetLoc-After rule. Here, its [is bound to the address
(r,7) one past the last cell of the constructor represented
by its given symbolic location [j. Like the D-Case rule,
the required address is obtained by application of end-
witness rule to the starting address of the given [, at
the type of the corresponding field 7. The final step
in creating a new data constructor instance is the D-
DataConstructor rule. It writes the specified constructor
tag K at the address in the store represented by the
symbolic location I.

The D-LetLoc-Start rule for the letloc with (start
r). expression binds the location to the starting address
in the region and starts running the body.

The remaining rules have conventional behavior, and
are available in the Appendix, D.3. Also in the Appen-
dix, there is a detailed explanation of the evaluation of
a sample program (§D.3.1).

3.3.1 Type Safety

The key to proving type safety is our store-typing rule,
given in full in the Appendix, D.5.

2, C AN vy M3 S

The store typing specifies three categories of invariants.
The first enforces that allocations occur in the sequence
specified by the constraint environment C'. In particular,
if there is some location [in the domain of C, then the lo-
cation map and store have the expected allocations at the
expected types. For instance, if (I » (after 7Ql'")) € C,
then " maps to (r,4) and [to (r,dz) in the location
map, and iy is the end witness of i; at type 7 in the
store, at region 7. The second category enforces that, for
each symbolic location such that (I — 7) € X| there is
some (r,4) for [in the location map and i; has some
end witness 42 at type 7. The final category enforces that
each address in the store is written once. This property
is asserted by insisting that, if [€ N, then there is some
(r,1) for [in the location map, but there is no write to
for 7 at r in the store. To support this property, there are
two additional conditions which require that the most
recently allocated location (tracked by to A, N) is at the
end of its respective region.

The type safety of LoCal follows from the following
result.

Theorem 3.1 (Type safety)

If (2;2;C;A4; N+ AN e: 7) A (Z;C AN -y M3 S)

and S;M;e="8" M ¢
then (e’ value) v (38", M" e". S";M'; e = S"; M";e")

PROOF The type safety follows from an induction with
the progress and preservation lemmas, shown in the
Appendix, D.6.

3.4 Offsets and Indirections

As motivated in §2, it is sometimes desirable to be able
to “jump over” part of a serialized tree. As presented
so far, LoCal makes use of an end witness judgment
to determine the end of a particular data structure in
memory. The simplest computational interpretation of
this technique is, however, a linear scan through the
store. Luckily, extending the language to account for
storing and making use of offset information for certain
datatypes is straightforward, and does not add concep-
tual difficulty to neither the formalism nor type-safety
proof.

Such an extension may use annotations on datatype
declarations that identify which fields of a given con-
structor are provided offsets and to permit cells in the
store to hold offset values. Because the offsets of a given
constructor are known from its type, the D-LetLoc-Tag
rule can allocate space for offsets when it allocates space
for the tag. It is straightforward to fill the offset fields
because D-DataConstructor rule already has in hand the
required offsets, which are provided in the arguments of
the constructor. Finally, the D-Case rule can use offsets
instead of the end-witness rule.

Indirections permit fields of data constructors to point
across regions, and thus require adding an annotation
form (e.g., an annotation on the type of a constructor
field to indicate an indirection) and extending the store
to hold pointers. Fortunately, as discussed later, regions
in LoCal are never collected; they are garbage collected
in our implementation. Every time an indirection field
is constructed, space for the pointer is allocated using
a transition rule similar to the D-LetLoc-Tag rule. The
D-DataConstructor rule receives the address of the indi-
rection in the argument list, just like any other location
and writes the indirection pointer to the address of the
destination field.

To type check, the type system extends with two new
typing rules and a new constraint form to indicate in-
directions. To maintain type safety in the presence of
offsets and indirections, the store typing rule needs to be
extended to include them. Because the programmer is
not manually managing the creation or use of offsets or
indirections (they are below the level of abstraction, indi-
cated by annotating the datatype, but not changing the

code), the store-typing rule generalizes straightforwardly
and the changes preserve type safety.

In datatype annotations each field can be marked to
store its offset in the constructor or be represented by
an indirection pointer (currently not both):

data T = K1 T (Ind T) | K2 T (Offset T) | K3 T
Type annotations would also be the place to express
permutations on fields that should be serialized in a
different order, (e.g., postorder). But it is equivalent
to generating LoCal with reordered fields in the source
program.

4 Compiling the Location Calculus

In this section we present a compiler for the LoCal lan-
guage, which consists of the formalized core from §3, ex-
tended with various primitive types, tuples, convenience
features, and a standard library. A well-typed LoCal
program guarantees correct handling of regions, but the
implementation still has substantial leeway to further
modify datatypes and the functions that use them. By
default, the compiler we present inserts enough indirec-
tion in datatypes to preserve the asymptotic complexity
of the source functions (under the assumption of O(1)
field access), but we also provide a mode—activated glob-
ally or per-datatype—that leaves the data types fized
and instead introduces inefficient “dummy traversals”
and copying code into compiled functions. (In this mode,
our compiler produces a similar result to what Gibbon
produced previously [30]—for comparison, we will dis-
tinguish between Gibbon2 (with LoCal) and Gibbonl
(without LoCal) in §7.)

Note that this “inflexible” mode—which doesn’t allow
the compiler to insert indirections—is also used when
reading in external data. In our LoCal implementation,
we provide a mechanism for any datatype to be read
from a file (via mmap),whose contents are the pointer-free,
full serialization. We use the same basic encoding as
Haskell’s Data.Serialize module derives by default, but
plan to extend it in the future.

Ultimately, because LoCal is meant to be generated
by tools as well as programmers, its goal is to add value
in both safety and performance, but to leave open the
design space of broader optimization questions to a front-
end that targets LoCal. One example of such a front-end
tool is in §5.

Compiler Structure We implement LoCal with a mi-
cropass, whole-program compiler that performs full re-
gion/location type checking between every pair of passes
on the LoCal intermediate representation (IR). After a
series of LoCal —LoCal passes, we lower to a second IR,
NoCal. As shown in Fig. 7, NoCal is not a calculus at
all, but a low-level language where memory operations
are made explicit. NoCal functions closely resemble the

n € Integers

Types T u=...|Cursor|Int

Pattern spat =K (z:Cursor) — e

Expressions e u= ...
| switch x of spat
| readInt x |writeInt x n
| readTag « | writeTag z K

| readCursor x

| writeCursor z (r,i)’

Figure 7. Grammar of NoCal (an extension of LoCal)

C code shown in Fig. 1. Code in this form manipulates
pointers into regions we call cursors because of their
(largely continuous) motion through regions. We repre-
sent NoCal internally as a distinct AST type, with high
level (non-cursor) operations excluded.

Within this prototype compiler, tuples, and built-in
scalar types like Int, Bool etc. are unbozed (never require
indirections). In the following subsections, we describe
the compiler in four stages. Similar to NoCal, our com-
piler represents programs at these stages with AST types
that track changes in the grammar needed by each pass.
After these four steps, the final backend is completely
standard. It eliminates tuples in the unariser, performs
simple optimizations, and generates C code. Because of
inter-region indirections, a small LoCal runtime system
is necessary to support the generated code, as described
in Section §4.5.

4.1 Compiler (1/4): Finding Traversals

Pattern matches in LoCal bind all constructor fields,
including those that occur at non-constant offsets, later
in memory. The compiler must determine which fields
are reachable based on either (1) constant offsets, (2)
stored offsets/indirections present in the datatype, or (3)
by leveraging traversals already present in the code that
scan past the relevant data. The third case corresponds
to determining end witnesses in the formal semantics.
Likewise, this compiler pass identifies data reached by
the work the program already performs.

To this end, we use a variation of a technique we
previously proposed [30]. Specifically, we assign traversal
effects to functions. A function is said to traverse it’s
input location if it touches every part of it. In LoCal, a
case expression is the only way to induce a traversal effect.
If all clauses of the case expression in turn traverse the
packed elements of the corresponding data constructors,
the expression traverses to the end of the scrutinee.
Traversing a location means witnessing the size of the
value encoded at that location, and thus computing the

address of the mext value in memory. After this pass,
the type schemes of top-level function definitions reflect
their traversal effects.

11,1
maplike : V I3 [9"2. Tree @ [3" M Tree Q [3"2
rightmost : V " . Tree @Q [" i Int

4.2 Compiler (2/4): Implementing Random
Access

Once we know what fields are traversed, we can also
determine which fields are used but not naturally reach-
able by the program: e.g. the right subtree read by
rightmost. In later stages of the compiler, we eliminate
all direct references to pattern-matched fields after the
first variable-sized one. This is where space/time op-
timization choices must be made: bytes for offsets v.s.
cycles for unnecessary traversals.

To activate random-access for a particular field within
a data constructor, we add additional information fol-
lowing the tag. Specifically, for a constructor x T1 T2,
if we need immediate access to T2, we include a 4-byte
relative-offset after the constructor.

Back-tracking
to add offsets, we invalidate previously computed loca-
tion information. Thus the compiler backtracks, rewind-
ing in time to before find-traversals (and inserting extra
letloc expressions to skip-over the offset bytes them-
selves). Adding random access to one datatype never
increases the set of constructors needing random-access
to maintain work-efficiency, so in fact we only backtrack
at most once.

In the default (offset-adding) mode, any function that
demands random access to a field will determine the
representation for all functions using the datatype. Our
current LoCal compiler does not automate choices such
as duplicating datatypes to achieve multiple encodings
of the same data—that is left to the programmer or
upstream tools.

If the LoCal compiler is passed a flag to not au-
tomatically change datatypes, then it must use the
same approach we previously used in Gibbon [30]: insert
dummy traversals that scan across earlier fields to reach
later ones. Regardless of whether the offset or dummy-
traversal strategy is used, at the end of this compiler
phase, we blank non-first fields in each pattern match
to ensure they are not referenced directly. So a pattern
match in our tree examples becomes “Node a _ - -7 or
“Node offset a _ — - .

4.3 Compiler (3/4) Routing End Witnesses

Each of the traversal effects previously inferred proves
we logically reach a point in memory, but to realize it
in the program we add an additional return value to

Unfortunately, when we modify datatypes

10

the function, witnessing the end-location for traversed
values (as described in Vollmer et al. [30]). We extend
the syntax to allow additional location-return values,
equivalent to returning tuples. The buildtree example
becomes:

l
buildtree : V [". Int o, Lafter(Tree@l”)] Tree@l”
buildtree [["] n =
if n == 0 then return [["+9] (Leaf (" 1)

letloc lg" = 1" + 1 in

let [Il;"] left = buildtree [l"] (n - 1)
let [l."] right = buildtree [[;"] (n - 1)
return [l."] (Node [" left right)

else

The 1etloc form for the location of the right subtree is
gone, because the first recursive call to buildtree returned
ly" as an end-witness, bound here with an extended 1et
form. Similarly, the final return statement returns the
end-witness of the right subtree, I.”, using a new return
form in the IR.

4.4 Compiler (4/4): Converting to NoCal

In this stage, we convert from LoCal into NoCal, switch-
ing to imperative cursor manipulation. At this stage,
location arguments and return values turn into first-class
cursor values (pointers into memory buffers representing
regions). The primitive operations on cursors read or
write one atomic value, and advance the cursor to the
next spot. We drop much of the type information at this
phase, and rightmost becomes:

rightmost Cursor — Int

rightmost cin = —— take a pointer as input
switch cin of —— read one byte
Leaf (cinl) —
let (cin2,n) =
Node (cinl) —

let (cin2,ran) =

readInt (cinl) in n

—— only get a pointer to the 1st field

readCursor (cinl) in
rightmost ran

Here the switch construct is simpler than case, reading a

one byte tag, switching on it, and binding a cursor to the

very next byte in the stream (cinl == cin + sizeof (tag)

== cin+1).

The key takeaway here is that, because the relation-
ship between location variables and normal variables
representing packed data are made explicit in the types
and syntax of LoCal, this pass does not require any com-
plicated analysis. Also, in NoCal we can finally reorder
writes to more often be in order in memory, which aids
prefetching and caching, because writes are ordered only
by data-dependencies for computing locations, with no
ordering needed on the side-effects themselves.

4.5 LoCal Runtime System & Allocator

The LoCal runtime system is responsible for region-based
memory management. A detailed description of the mem-
ory management strategy is available in the Appendix, C.

in

in

In brief, we use region-level reference counts. Each re-
gion is implemented as linked list of contiguous memory
chunks, doubling in size. This memory is write-once, and
immutability allows us to track reference counts only
at the region level. Exiting a 1etregion decrements the
region’s count, and it is freed when no other regions
point into it.

5 High-Level Programs: HiCal to
LoCal

LoCal captures a notion of computation over (mostly)
serialized data, exposing choices about representation. It
provides the levers needed by a human or another tool
to explore the design space of optimization trade-offs
above this level, i.e., for the human or tool to answer
the question “how do we globally optimize a pipeline of
functions on serialized data?”.

First, if multiple functions use the same datatype, do
they standardize on one representation? Or does that
datatype take different encodings at different points in
the pipeline (implemented by cloning the datatype and
presenting it to LoCal with different annotations)? Sec-
ond, when up against the constraint of already-serialized
data on disk, the compiler can’t change the existing
representation, if the external data lacks offsets, is it
better to force the first consuming function to use that
representation, or to insert an extra reserialization step
to convert'? Third, can the compiler permute fields to
improve performance or reduce the stored offsets needed?

This large space of future work is beyond the scope of
this paper, but we nevertheless illustrate the process of
integrating LoCal into Gibbon. The front-end language
for Gibbon, HiCal, is a vanilla purely functional language
without any region or location annotations. It hides data-
layout from the programmer (and the low-level control
that comes with it). It also facilitates comparison with
mature compilers, as HiCal runs standard functional
programs: for example, the unannotated examples we’ve
seen in this paper.

The syntax for HiCal is a subset of Haskell syntax,
supporting algebraic data types and top-level function
definitions. It is a monomorphic, strict functional pro-
gramming language, and for simplicity it is first or-
der, like LoCal. In future-work, we plan to add sup-
port for a higher-order, polymorphic front-end language
through standard monomorphization and defunctional-
ization. (An interesting consequence of this will be that
closures become regular datatypes, such that a list of
closures could be serialized in a dense representation.)

1Still faster than traditional deserialization: no object graph
allocation.

11

Implementing HiCal The compiler must perform
a variant of region inference [25, 26], but differs from
previous approaches in some key ways. The inference
procedure uses a combination of standard techniques
from the literature and specialized approach for satis-
fying LoCal’s particular needs?. Because the inference
must determine not only what region a value belongs
to, but where in that region it will be, the inference
procedure returns a set of constraints for an expression
similar to the constraint environment used in the typing
rules in Fig. 4, which are used to determine placement
of symbolic location bindings. Additionally, certain lo-
cations are marked as fized (function parameters, data
constructor arguments), and when two fixed locations
attempt to unify it signals the need for an indirection,
and the program must be transformed accordingly.

Our current implementation adds an extra variant to
every data type® representing a single indirection (called
1). For example, a binary tree T becomes

data T = Leaf | Node T T | I (Ind T)

The identity function id x = x, when compiled to LoCal,
isid x = I x. Likewise, sharing demands indirections, and
in Node x x becomes let x = _ in Node x (I x).

let x =

6 Related Work

Many libraries exist for working with serialized data, and
a few make it easier to use serialized data as in-memory
data, or to export the host-language’s pre-existing in-
memory format as external data. Cap’N Proto?, is de-
signed to eliminate encoding/decoding by standardizing
on a new binary format for use in memory as well on
disk/network. Compact Normal Forms (CNF) [33] is
a feature provided by the Glasgow Haskell Compiler
since release 8.2. The idea is that any purely functional
value, once fully evaluated, can be compacted into its
own region of the heap — capturing a transitive clo-
sure of its reachable heap. After compaction, the CNF
can be stored externally and loaded back into the heap
later. Persistent languages tackle the problem of au-
tomatically moving data between disk and in-memory
representations [1, 2, 13], and can swizzle pointers as
part of this translation to create more efficient represen-
tations. However, like CNF, these representations still
maintain pointers, so cannot realize the full advantage
of our system.

If we look instead at compiler support for computing
with data in dense or external forms, there are many
compilers for stream processing languages [20, 24]—or

2The Directed Inference Engine for region Types, if you will.
3These indirections do double-duty in allowing the memory man-
ager to use non-contiguous memory slabs for a region C.

4An “insanely fast data interchange format,” https://capnproto.

org/, [28]

https://capnproto.org/
https://capnproto.org/

restricted languages such as XPath [19]—that gener-
ate efficient computations over data streams. These are
somewhat related, but LoCal differs in targeting general
purpose recursive functions over algebraic datatypes.
In this category, the main published approach is our
prior work on Gibbon [30], which compiles idiomatic
programs to operate on serialized data. However, the
Gibbon approach described previously can only han-
dle fully serialized data and thus introduces asymptotic
slowdowns as we’ll see in the next section. (At the time,
we considered adding indirections as future work but
they were not part of the compiler.) Also, the prior Gib-
bon compiler had no analogue to our location calculus:
no way for a type-system to enforce correct handling
of regions and locations within serialized data—which
provides a much stronger foundation for building such
compilers.

The problem of computing without deserializing can be
viewed as a fusion/deforestation problem: to fuse the
compute loop with the deserialize loop. But traditional
deforestation approaches [31], don’t rise to being able
to handle a full deserializer, and popular approaches
based on more restrictive combinator libraries [7] are less
expressive than HiCal and LoCal.

Ornaments are a body of theory regarding connec-
tions between related data structure that differ based
on additions or reorganization [15]. Indeed, LoCal’s ad-
dition of offset fields to data is ornamentation. Practical
implementations of ornaments [32] provide support for
lifting functions across types related by ornaments, trans-
forming the code. However, the isomorphism between
a datatype and its serialized form is not an ornament,
and thus lifting functions across that isomorphism is not
supported.

Finally, LoCal relates to a broader literature on op-
timizing tree-traversing programs and heap represen-
tations. For the interested reader, this is detailed in
the appendix, B. LoCal does not allow construction of
cyclic values (only DAGs), so it is less related to graph-
processing systems.

7 Evaluation

In this section we evaluate our implementation by looking
both at benchmarks that operate on data already in
memory, as well as programs that process serialized
data stored on disk. One of the main results of this
work is categorical rather than quantitative — that a
compilation approach based on LoCal/HiCal can lift
functions over (mostly) serialized data without changing
their asymptotic complexity.

We compare performance against prior systems for
computing with serialized data. The approach we used
previously in Gibbon (which we denote “Gibbonl” here)

12

provides one point of comparison; it achieves constant-
factor speedups over pointer-based representations (even
discounting [de]serialization time itself) [30], except when
it generates code with an asymptotic slowdown. We also
compare against Cap’N Proto (v0.6.1) and CNF (GHC
8.2.2), described in §6.

The evaluations in this section are performed on a
2-socket Intel Xeon E5-2630, with 125GB of memory,
running Ubuntu 16.04, GCC 5.4.0. Measurements re-
ported are the median of 9 trials, where an individual
trial is defined as a separate run of the program that
takes at least one second of real time, discounting setup
time. (For short benchmarks, we iterate them a suffi-
cient number of times in an inner loop to reach the 1s
threshold, then divide to compute average per-iteration
time.)

7.1 Serialized—Serialized Benchmark
Programs

We consider the following set of tree programs, which
provide a panel of litmus tests for which kinds of tree
operations are well-supported by which frameworks: id,
buildTree, rightmost, sumTree, copyTree. These
programs have been either shown before or are self-
explanatory, but for reference we include a description
of each in Appendix A.1. This first batch of experiments
use the simple binary tree datatype with integer leaves
(first introduced in §2). In each case the goal is to get
from a serialized input in a buffer (as it would have come
from the network or disk) to another serialized output
ready to send. In general, we allow appending to but not
destroying the input message.

We additionally consider operations on search-trees in
the below benchmarks. These search trees store integer
keys on all intermediate nodes, where keys on left sub-
trees are smaller than the root, and right subtrees are
larger. The data type is: data STr = Null | Leaf Int |
Node Int STr STr These benchmarks—buildSearchTree,
treeContains, treelnsert, findMax, propagateCon-
stant—are described in §A.1, except for one that is not
self-explanatory:

repMax: a variant of the “repmin” [4, 17] program,
which returns a new search tree of the same shape, with
every value replaced by the mazimum value of the origi-
nal tree. It performs two passes over the tree — a bottom-
up pass to compute the largest element (i.e. findMax),
and a top-down pass to propagate this value in the tree
(i.e. propagateConst).

7.2 Discussion of Results

Table 2 shows the results. The column labeled “Gibbon2”
shows performance of HiCal programs (low-level LoCal
control was not needed for any of these) using indirec-
tions and offsets, automatically. “Gibbonl” shows the

approach described in Vollmer et al. [30]. There are two
major sources of overhead for our new approach versus
Gibbonl:

1. Growable regions: In each case, our compiler starts
with smaller, growable regions®, which we require to
create small output regions as in id or treelnsert,
but we suffer the overhead of bounds-checking. On
the other hand, Gibbon always stores fully serialized
data in huge regions.

2. Likewise, we have found that the backend C compiler
is sensitive to the number of cases in switch statements
on data constructor tags (for instance, triggering the
jump table heuristic). By including the possibility
that each tag we read may be a tagged indirection, we
increase code size and increase the number of cases
in our switch statements.

However, the benchmarks where indirections and random-

access offsets are important (id, rightmost, treelnsert,
findMax) show a huge difference between Gibbonl and
Gibbon2, as we would expect based on Gibbon1 requiring
additional traversals to compile those functions.

Versus pointer-based representations The “Non-
Packed” approach is LoCal configured to always insert
indirections and thus emulate a traditional object repre-
sentation. In this case, we are being overly friendly to this
pointer-based representation by allowing it to read its
input (for example, the input tree to treeIlnsert) in an
already-deserialized, pointer-based form. A full apples-to-
apples comparison would force the pointer-based version
to deserialize the input message and reserialize the out-
put; but we omit that here to focus only on the cost of
the tree traversals themselves.

Versus competing libraries The biggest differences
in Table 2 are due asymptotic complexity. However,
for constant factor performance, we see the expected
relationship—that our approach and Gibbon are faster
than CNF and Cap’N Proto, sometimes by an order of
magnitude, e.g.,add1Leaves.

CNF and Cap’N Proto encode some metadata in their
serialization, to support the GHC runtime, and protocol
evolution, respectively. On the other hand, our compiler
only uses offsets and tagged indirections when needed,
and the size ratio of the encodings depends on how much
these features are used. For example, rightmost uses a
data-encoding that includes random-access offsets, and
treelnsert creates an output with a logarithmic number
of tagged indirections. Thus while our size advantage
over CNF is 4x smaller on buildTree, it is only 2.22x
for rightmost.

Sstarting at 64K bytes

13

16
. RapidJSON(parser) —8—
S 14 RapidJSON(lexer) = =+ -
o CNF - ®-
2 1k Cap'n Proto —A—
g Gibbonl - -
®10E------"" L
8 ~
c 8F o
2 S~ - *
o S el _ g
(=}
w 4F e
§ ‘\‘_______‘____‘.——'-‘x
g 2 _---®-""""
0.,.._-._- Ve i v =y
1 10 100 1000

Megabytes of JSON data

(a) Count “cats” hashtags from disk. Relative slowdown
(resp. speedup) of approaches, normalized to our compiler.

CNF
2117MB

Gibbon2
257MB

Cap’n Proto
735MB

Size

(b) Sizes for 1000MB of Twitter JSON data, translated to other

f ts.
ormats Figure 8. Twitter data IO experiment

Composing traversals For offset-insertion, we allow
the whole-program compiler to select the data representa-
tion based on what consuming functions are applied to it.
In the presence of multiple functions traversing a single
data structure, any function demanding random access
changes the representation for all of them. repMax is
one such example: repMax t = propagateConst (findMax t) t.
Here findMax only requires a partial scan (random ac-
cess), but propagating that value requires a full traver-
sal. In this case, the compiler would add offsets to the
datatype to ensure that ‘findMax’ remains logarithmic.
However, this causes the subsequent traversal (propa-
gateConst) to slow down, as it now has to unnecessarily
skip over some extra bytes. Likewise, if we do not include
findMax in the whole program, the data remains fully se-
rialized, which is why propagateConst and findMax
run separately take less than 440ms, but run together
take 480ms. Yet the latter time is still 6x and 9x faster,
respectively, than CNF and Cap’N Proto!

7.3 I0O-intensive Benchmarks

The previous section examined benchmarks on data
already in memory, but ultimately we want to minimize
end-to-end latency to process data from disk or the
network. Thus, in this section, we compare the cost of
processing serialized data stored on disk, as well as the
serialized space usage on disk. For a real data set, we use
Twitter metadata consisting of user ID’s and hashtags for
all tweets posted in 1 month, and count the occurrences
of the hashtag “cats” in this dataset. Here we seek to
replicate and extend the CNF experiment reported by
Yang et al. [33].

100 ¢
. 10 £
(=2
k]
] 1k
< L
o
o
Q
wn
k= 0.1
Q
E A
= Gibbonl —&—
0.01 Gibbon2 - +-
NonPacked —#&—

Racket —&—

10 100
Megabytes of Racket AST's

Figure 9. Count the nodes in a Racket AST

0.001

The dataset is stored on disk in JSON format, and
we use RapidJSON v1.1.0 (http://rapidjson.org/) as a per-
formance baseline: a widely recognized fast C++ JSON
library. In Fig. 8a, we vary the amount of data processed,
up to 1GB. (For each data-point, taking the median of 9
trials ensures the data is already in the Linux disk cache.)
For fairness, all versions read the data via a single mmap
call, plus demand paging.

There are two RapidJSON versions. The “lexer” ver-
sion never constructs an object representing a parsed
tweet, rather, it is a state-machine that is able to count
“cats” while tokenizing, without parsing. It is optimized
to be as fast as possible for this particular JSON schema,
with no error detection (a non-compliant input would
give silent failures and wrong answers). The “parser’
version represents a more traditional and idiomatic situ-
ation use of the library: calling the .parse() method to
produce a DOM object, and then accessing its fields. We
have structured this benchmark to maximally advantage
this parsing approach: the 9,111,741 tweets processed
in the rightmost data points of Fig. 8a are stored as
one JSON object each, on each line of the input file.
Thus the data only needs to be read into memory once,
and in a single pass the RapidJSON benchmark reads,
parses, discards, and repeats. Conversely, if the tweets
were instead stored as a single JSON array, filling the
entire input file, then RapidJSON would have to parse
the entire file (writing the DOM tree out to memory,
overflowing last level cache), then read that same tree
back into memory in a second pass to count hashtags.
Nevertheless, in spite of this single-pass advantage, our
compiler achieves 6x and 12x speedup over RapidJSON
lexer/parser. We process the 9.1M tweets in 0.39s.

For non-JSON implementations (Gibbonl, Gibbon2,
CNF, and Cap’n Proto) we store the serialized data on
disk in its respective binary format, without indirections.
Of course, if the data originates in JSON or another
format, a conversion and caching layer will be needed
to convert it (once) to the efficient format. As shown
in Fig. 8b there is a significant difference in the sizes of

i

14

Table 2. Tree-processing functions operating on serial-
ized data. Each cell contains time, complexity, and input
bytes [1] or output bytes [2], where appropriate. The
fastest variant is highlighted, as well as any that are
an order of magnitude or more slower than the fastest.
We are 202 / 2.6 / 3.2 / 17.9 x geomean faster than
Gibbon/NonPacked/CNF/CapNP, and 0.96 / 2.6 / 3.2
/ 9.8 x faster for only apples-to-apples asymptotics.

Benchmark Gibbon2 Gibbon1 NoPacked CNF CapProto
id 2.1ns 0.32s 0.93ns 2.1ns 204ns
o(1) O(N) o(1) o(1) o(1)
leftmost [1] 17ns 18ns 26ns 44ns 420ns
O(log(N)) O(log(N)) =~ Oflog(N)) = Of(log(N)) | Oflog(N))
335MB 335MB 335MB 1.34GB 1.61GB
rightmost [1] 175ns 56ms 19ns 47ns 561ns
O(log(N)) O(N) O(log(N)) O(log(N)) | O(log(N))
603MB 335MB 335MB 1.34GB 1.61GB
buildTree [2] 0.27s 0.24s 2.7s 4.5s 2.66s
O(N) O(N) O(N) O(N) O(N)
335MB 335MB 1.834GB 1.84GB 1.61GB
add1leaves 0.25s 0.24s 3.1s 2.7s 4.88s
ON) O(N) O(N) O(N) O(N)
sumTree 95ms 67ms 0.81s 0.27s 1.22s
O(N) O(N) O(N) O(N) (ON)
copyTree 0.2s 0.24s 3.5s 1.1s 2.53s
O(N) O(N) O(N) O(N) O(N)
srchTree [2] 0.5s 0.49s 2.96s 4.27s 3.94s
O(N) O(N) O(N) O(N) O(N)
603MB 603MB 1.61GB 1.61GB 1.61GB
treeContains | 0.69us 0.1s 0.92us 1us 1.25ps
O(log(N)) O(N) O(log(N)) = Oflog(N)) = O(log(N)
treelnsert [3] 0.87us 0.38s 2.5us 3.5us 2.24s
O(log(N)) O(N) O(log(N)) O(log(N) O(N)
677 bytes 603MB 856 bytes = 848 bytes 1.61GB
insertDestr NA NA NA NA 1.72ps
O(log(N))
findMax 206ns 88ms 41ns 75ns 3.94ps
O(log(N)) O(N) O(log(N)) = O(log(N)) | O(log(N))
propConst 0.43s 0.42s 3.3s 4.2s 4.83s
O(N) O(N) O(N) O(N) O(N)
repMax 0.48s 0.51s 3.2s 4.3s 4.88s
O(N) O(N) O(N) O(N) O(N)

the serialized data, when converting 1GB of JSON data.
Our approach is smaller and more than twice as fast at
processing all tweets than either CNF or Cap’N Proto.
Gibbonl is slightly faster due to its huge regions, lack of
bounds checking, and fewer switch cases (especially given
the small number of switch cases in this data schema).

7.4 10 + large datatype: Traversing Racket
ASTs

Finally, as a second 10-intensive benchmark, we consider
reading a tree with a more complicated type (9 mutually
recursive types with 36 data constructors). Fig. 9 shows
the result of reading the full ASTs used internally in
the Racket compiler, and then counting AST nodes.

http://rapidjson.org/

Using our approach, or Gibbon, or our approach with
full indirections (“NonPacked”) is vastly faster than
the native and idiomatic way a Racket programmer
would ingest this data. Racket’s optimized read function
(implemented in C inside the runtime) takes 71.1 seconds
to parse a 366MB S-expression file, and then 0.94s to
traverse it in memory. Our compiler reads and processes
the data in its binary format (100MB) in 131ms. Thus
it is 543x faster than the idiomatic method of data
processing in the original language, and 7.1x faster even
if data deserialization and 1O are completely discounted.
Also, here Gibbon loses its small advantage over our
approach due to the already large size of the switch
statements produced (36 constructor variants).

8 Conclusions & Future Work

When the purpose of a program is to process external
data, we should consider alternate implementation ap-
proaches that transform the code to bring it closer
to the data, rather than the other way around. This
can speed 10 by eschewing parsing/deserialization, speed
traversals once in memory, and, with care, can optimize
fast cases without introducing unpredictably (asymptot-
ically) slow cases.

We believe that this work opens up significant follow-
on possibilities. First, a LoCal implementation can be-
come more representation-flexible to directly support
appropriate external data formats such as Apache Avro
or CBOR.

Second there is plenty of room to grow the size of the
functional language supported by a HiCal — LoC'al com-
piler, for example, into a much larger subset of Haskell.
Integrating task-parallelism one direction, and the mostly
serialized representations supported by LoCal suggest
a connection to parallel- vs sequential-processing in a
granularity-management strategy. Mutation is another
frontier, where a traditional approach to mutable data
(as found in imperative languages or 10 monads) would
appear to clash with the needs of dense representations.
We plan to employ the Linear Haskell extensions [3] to
introduce a limited capability for mutable data, expos-
ing a more context-sensitive notion of where and when
mutation may occur within a tree, and also striving to
retain (deterministic) parallelism.

Acknowledgments

This work was supported in part by National Science
Foundation awards CCF-1725672 and CCF-1725679, and
by Department of Energy award DE-SC0010295. We
would like to thank our shepherd, Ilya Sergey, as well
as the anonymous reviewers for their suggestions and
comments.

15

References

[1] Malcolm Atkinson and Ronald Morrison. 1995. Orthogonally
Persistent Object Systems. The VLDB Journal 4, 3 (July
1995), 319-402. http://dl.acm.org/citation.cfm?id=615224.
615226
M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S.
Spence. 1996. An Orthogonally Persistent Java. SIGMOD Rec.
25, 4 (Dec. 1996), 68-75. https://doi.org/10.1145/245882.
245905
Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton,
Simon Peyton Jones, and Arnaud Spiwack. 2017. Linear
Haskell: Practical Linearity in a Higher-order Polymorphic
Language. Proc. ACM Program. Lang. 2, POPL, Article 5
(Dec. 2017), 29 pages. https://doi.org/10.1145/3158093
[4] R. S. Bird. 1984. Using Circular Programs to Eliminate
Multiple Traversals of Data. Acta Inf. 21, 3 (Oct. 1984),
239-250. https://doi.org/10.1007 /BF00264249
[5] TM Chilimbi, MD Hill, and JR Larus. 1999. Cache-conscious
structure layout. ACM SIGPLAN Notices (1999). http:
//dl.acm.org/citation.cfm?id=301633
Trishul M. Chilimbi and James R. Larus. 1999. Using genera-
tional garbage collection to implement cache-conscious data
placement. , 37-48 pages. https://doi.org/10.1145/3015809.
286865
Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007.
Stream fusion: from lists to streams to nothing at all. In
ICFP: International Conference on Functional Programming.
ACM.
Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. 2013.
General transformations for GPU execution of tree traver-
sals. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis
(Supercomputing) (SC ’13).
[9] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks,
Yanling Wang, and James Cheney. 2002. Region-based mem-
ory management in Cyclone. In PLDI. http://dl.acm.org/
citation.cfm?id=512563
Antony L. Hosking and J. Eliot B. Moss. 1993. Object Fault
Handling for Persistent Programming Languages: A Perfor-
mance Evaluation. In Proceedings of the Eighth Annual Con-
ference on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA ’93). ACM, New York, NY, USA,
288-303. https://doi.org/10.1145/165854.165907
Chris Lattner and Vikram Adve. 2005. Automatic pool allo-
cation: improving performance by controlling data structure
layout in the heap. ACM SIGPLAN Notices 40 (2005), 129-
142. https://doi.org/10.1145/1065010.1065027
Chris Lattner and Vikram S. Adve. 2005. Transparent Pointer
Compression for Linked Data Structures. In Proceedings of
the 2005 Workshop on Memory System Performance (MSP
’05). ACM, New York, NY, USA, 24-35. https://doi.org/10.
1145/1111583.1111587
B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber,
U. Maheshwari, A. C. Myers, M. Day, and L. Shrira. 1996.
Safe and Efficient Sharing of Persistent Objects in Thor.
In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’96). ACM,
New York, NY, USA, 318-329. https://doi.org/10.1145/
233269.233346
Junichiro Makino. 1990. Vectorization of a treecode. J.
Comput. Phys. 87 (March 1990), 148-160. https://doi.org/
10.1016,/0021-9991(90)90231-0O
Conor McBride. 2010. Ornamental algebras, algebraic orna-
ments. Journal of functional programming (2010).

2

3

=

[7

8

(10]

(11]

(12]

(13]

14]

(15]

http://dl.acm.org/citation.cfm?id=615224.615226
http://dl.acm.org/citation.cfm?id=615224.615226
https://doi.org/10.1145/245882.245905
https://doi.org/10.1145/245882.245905
https://doi.org/10.1145/3158093
https://doi.org/10.1007/BF00264249
http://dl.acm.org/citation.cfm?id=301633
http://dl.acm.org/citation.cfm?id=301633
https://doi.org/10.1145/301589.286865
https://doi.org/10.1145/301589.286865
http://dl.acm.org/citation.cfm?id=512563
http://dl.acm.org/citation.cfm?id=512563
https://doi.org/10.1145/165854.165907
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/1111583.1111587
https://doi.org/10.1145/1111583.1111587
https://doi.org/10.1145/233269.233346
https://doi.org/10.1145/233269.233346
https://doi.org/10.1016/0021-9991(90)90231-O
https://doi.org/10.1016/0021-9991(90)90231-O

[16]

17]

(18]

19]

20]

(21]

(22]

(23]

[24]

Leo A. Meyerovich, Todd Mytkowicz, and Wol-
fram Schulte. 2011. Data Parallel Programming
for Irregular Tree Computations, In HotPAR.

https://www.microsoft.com/en-us/research /publication/
data-parallel-programming-for-irregular-tree-computations/

Leo A. Meyerovich, Todd Mytkowicz, and Wol-
fram Schulte. 2011. Data Parallel Programming
for Irregular Tree Computations, In HotPAR.

https://www.microsoft.com/en-us/research /publication/
data-parallel-programming-for-irregular-tree-computations/
Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
1998. From System F to Typed Assembly Language. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’98). ACM,
New York, NY, USA, 85-97. https://doi.org/10.1145/268946.
268954

Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. 2012. High-
performance Complex Event Processing over XML Streams.
In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’12). ACM,
New York, NY, USA, 253-264. https://doi.org/10.1145/
2213836.2213866

Ryan R. Newton, Sivan Toledo, Lewis Girod, Hari Balakr-
ishnan, and Samuel Madden. 2009. Wishbone: Profile-based
partitioning for sensornet applications. In Symposium on
Networked Systems Design and Implementation (NSDI’09).
USENIX Association, 395-408.

Bin Ren, Gagan Agrawal, James R. Larus, Todd Mytkowicz,
Tomi Poutanen, and Wolfram Schulte. 2013. SIMD paralleliza-
tion of applications that traverse irregular data structures.
In Proceedings of the 2013 IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO 2013,
Shenzhen, China, February 23-27, 2013. IEEE Computer So-
ciety, 20:1-20:10. https://doi.org/10.1109/CG0.2013.6494989
Bin Ren, Todd Mytkowicz, and Gagan Agrawal. 2014. A
Portable Optimization Engine for Accelerating Irregular Data-
Traversal Applications on SIMD Architectures. TACO 11, 2
(2014), 16:1-16:31. https://doi.org/10.1145/2632215

Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones,
and Dimitrios Vytiniotis. 2017. Destination-passing Style
for Efficient Memory Management. In Proceedings of the 6th
ACM SIGPLAN International Workshop on Functional High-
Performance Computing (FHPC 2017). ACM, New York, NY,
USA, 12-23. https://doi.org/10.1145/3122948.3122949
William Thies, Michal Karczmarek, and Saman P. Amaras-
inghe. 2002. StreamlIt: A Language for Streaming Applica-
tions. In International Conference on Compiler Construction.

16

[25]

[26]

27)

28
29

(30]

(31]
32]

33]

Springer-Verlag.

Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hal-
lenberg. 2004. A Retrospective on Region-Based Memory
Management. Higher Order Symbol. Comput. 17, 3 (Sept.
2004), 245-265. https://doi.org/10.1023/B:LISP.0000029446.
78563.a4

Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based
Memory Management. Inf. Comput. 132, 2 (Feb. 1997), 109—
176. https://doi.org/10.1006/inco.1996.2613

D. N. Truong, F. Bodin, and A. Seznec. 1998. Improving
Cache Behavior of Dynamically Allocated Data Structures. In
Proceedings of the 1998 International Conference on Parallel
Architectures and Compilation Techniques (PACT ’98). IEEE
Computer Society, Washington, DC, USA, 322—. http://
portal.acm.org/citation.cfm?id=522344.825680

Kenton Varda. 2015. Cap’n Proto. https://capnproto.org/
Michael Vollmer, Chaitanya Koparkar, , Mike Rainey, Laith

Sakka, Milind Kulkarni, and Ryan R. Newton. 2019. LoCal: A
Language for Programs Operating on Serialized Data. Techni-
cal Report. Indiana University. https://help.sice.indiana.edu/
techreports/ TRNNN.cgi?trnum=TR741.

Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith
Sakka, Chaitanya Koparkar, Milind Kulkarni, Sam Tobin-
Hochstadt, and Ryan R. Newton. 2017. Compiling Tree Trans-
forms to Operate on Packed Representations. In 81st Furo-
pean Conference on Object-Oriented Programming (ECOOP
2017) (Leibniz International Proceedings in Informatics
(LIPIcs)), Peter Miiller (Ed.), Vol. 74. Schloss Dagstuhl—-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 26:1—
26:29. https://doi.org/10.4230/LIPlcs. ECOOP.2017.26

P. Wadler. 1988. Deforestation: Transforming Programs
to Eliminate Trees. In European Symposium on Program-
ming. Berlin: Springer-Verlag, 344-358. citeseer.ist.psu.edu/
wadler90deforestation.html

Thomas Williams and Didier Rémy. 2017. A Principled
Approach to Ornamentation in ML. Proc. ACM Program.
Lang. 2, POPL, Article 21 (Dec. 2017), 30 pages. https:
//doi.org/10.1145/3158109

Edward Z. Yang, Giovanni Campagna, Omer S. Agacan,
Ahmed El-Hassany, Abhishek Kulkarni, and Ryan R. New-
ton. 2015. Efficient Communication and Collection with
Compact Normal Forms. In Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Program-
ming (ICFP 2015). ACM, New York, NY, USA, 362-374.
https://doi.org/10.1145/2784731.2784735

https://www.microsoft.com/en-us/research/publication/data- parallel-programming-for-irregular-tree-computations/
https://www.microsoft.com/en-us/research/publication/data- parallel-programming-for-irregular-tree-computations/
https://www.microsoft.com/en-us/research/publication/data-parallel-programming-for-irregular-tree-computations/
https://www.microsoft.com/en-us/research/publication/data-parallel-programming-for-irregular-tree-computations/
https://doi.org/10.1145/268946.268954
https://doi.org/10.1145/268946.268954
https://doi.org/10.1145/2213836.2213866
https://doi.org/10.1145/2213836.2213866
https://doi.org/10.1109/CGO.2013.6494989
https://doi.org/10.1145/2632215
https://doi.org/10.1145/3122948.3122949
https://doi.org/10.1023/B:LISP.0000029446.78563.a4
https://doi.org/10.1023/B:LISP.0000029446.78563.a4
https://doi.org/10.1006/inco.1996.2613
http://portal.acm.org/citation.cfm?id=522344.825680
http://portal.acm.org/citation.cfm?id=522344.825680
https://capnproto.org/
https://help.sice.indiana.edu/techreports/TRNNN.cgi?trnum=TR741
https://help.sice.indiana.edu/techreports/TRNNN.cgi?trnum=TR741
https://doi.org/10.4230/LIPIcs.ECOOP.2017.26
citeseer.ist.psu.edu/wadler90deforestation.html
citeseer.ist.psu.edu/wadler90deforestation.html
https://doi.org/10.1145/3158109
https://doi.org/10.1145/3158109
https://doi.org/10.1145/2784731.2784735

A Evaluation Details
A.1 Benchmark Descriptions

In §7.1, we mentioned a series of benchmark programs that we would use to evaluate our implementation, most of
which have self-evident names (like sumTree), but for full transparency we will enumerate each benchmark and give
any relevant details about their different implementations in differing systems we compare.

e id: the simplest test, an identity function (Az.x). For this benchmark, id must be called as a function, not inlined,
and return a valid message. In a general-purpose language, we simply return the input message in O(1) time, but
Gibbon can only compile this function as a deep copy! We are also limited by our type system, forced to keep
output region distinct from input, but we can write a tagged indirection, pointing back to the input message.

e buildTree: build a binary tree of given height. We use height 25, creating trees with 22 leaves and 2%° — 1 interior

nodes (likewise for the rest of the benchmarks in this group).

rightmost: return the rightmost leaf in the binary tree.

add1Leaves: map an addl function over the tree, returning a fresh tree in the output message.

sumTree: sum the leaves of the tree.

copyTree: copy the input message to a fresh buffer. For this benchmark we require no sharing of data with the

input message, but we allow whatever form of copying performs best for the given system. For example, it is

permitted to simply memcpy the message. Lacking such a low-level primitive, the Gibbon approach and ours require a

tree-walk (similar to add1Leaves). CNF allows a memcpy style operation, but it uses absolute pointers, and the

“pointer fixup” pass makes it slightly slower than just doing a tree-walk, so we use a tree-walk. Cap’N Proto does

not provide low-level access to the memory segments holding the message (the API instead wants you to send the

message to a file descriptor), but it does provide its own notion of an internal deep-copy (tree walk), which we use.

And the search tree benchmarks:

e buildSearchTree: build a balanced search tree in the output message, containing 22 total nodes and max height
26 (including null nodes as separate nodes).

e treeContains: take the previous search tree as input and check if it contains a random key.

e treelnsert: take the same search tree as input and insert one new element at a random key, rebuilding a spine
of the tree. That is, it may write a new piece of memory (contiguous with the input or not) containing only the
log(N) newly created nodes, but pointing back to the unchanged part of the tree, if that is supported. Because
Cap’N Proto does not support sharing, it must copy the whole tree to insert into it. However, it will allow direct
mutation of the tree inside the input message buffer, so we test this as a separate variant, treeInsertDestructive.

e findMax: return the largest element in the search tree.

e propagateConst: map over the tree and replace all values with a constant integer.

e repMax: a variant of the “repmin”[4, 17] program, which returns a new search tree of the same shape, with every
value replaced by the mazimum value of the original tree. It performs two passes over the tree — a bottom-up
pass to compute the largest element (i.e. findMax), and a top-down pass to propagate this value in the tree (i.e.
propagateConst).

B Related Work in Tree Layout and Allocation

There has been significant work in optimizing the layout and traversal patterns of tree data structures for performance
reasons. The most closely related line of work is cache-conscious structure layout [5], which proposes a data layout
scheme that lays out the nodes of a tree according to an order determined by a provided traversal function. Because
this layout is determined by a specific traversal function, it serves a similar purpose to the linearization of data in our
packed layout: when trees are traversed in the same manner as the layout order, spatial locality is improved. Note,
however, that Chilimbi et al.’s approach does not change the internal structure of objects, nor the code that traverses
those data structures. Hence, all pointers are preserved, and this approach does not offer the additional benefits of
our packed layout such as denser accesses and avoidance of pointer indirection. Other spatial locality work [6, 11, 27]
has similar effects and limitations to cache-conscious structure layout.

Lattner and Adve [11] propose automatic pool allocation that allocates disjoint data structures into disjoint partitions
of memory. Leveraging this approach, Lattner and Adve [12] propose a compression optimization. Because a data
structure is allocated into an isolated pool, “internal” pointers that connect nodes of that data structure definitely do
not access arbitrary memory locations, and hence can use narrower bit widths to save space. Unlike the spatial locality
work discusses in the previous paragraph, this compression optimization both shrinks the overall representation

17

of the data structure (as in our packed representation) and utilizes compiler rewrites to do so (as in our compiler
transformations).

Tree linearization, and the attendant changes required to traversal code, are common in high-performance computing
settings, especially for vectorization [8, 14, 16, 21, 22]. These approaches, by closely matching data structure layout
to the traversal behavior of specific applications, can eliminate many pointer dereferences, compress data structures,
and simplify traversal implementations. However, all of these approaches are programmer-directed: either ad hoc,
application-specific implementations [8, 14, 16], or driven by library functions that the programmer must exploit [21, 22].

C LoCal Runtime System Details

In LoCal, locations track natural number positions within a region. Abstractly, a region is an unbounded, byte-indexed
storage area that can be extended incrementally by requesting N additional bytes (equivalent to malloc)). Each
region grows monotonically, never shrinks, and can be freed only as a whole. Practically speaking, there are at many
reasonable implementation strategies. We always start by allocating a contiguous chunk of memory of bounded size.
When that chunk is exhausted, we must choose whether to grow the region by copying (or changing memory-mapping),
retaining a contiguous address range, or by linking a new, non-contiguous chunk.

We choose the latter and implement regions as a linked list of chunks: a constant sized initial chunk, with subsequent
chunks doubling in size. The runtime representation of locations (and Ptr T values) is a direct pointer into the interior
of a chunk. (We call the writable portion of the chunk that can carry data the payload.) Chunks linked together form
regions as pictured in Fig. 10. Chunk metadata is stored at the end of the allocated area, in a footer data structure
listed below:

struct footer {
// Available bytes for serialized-data storage.
int size;
// Shared reference count for this region (not chunk)
int* refcount;
// Set of regions we have outbound pointers into.
ptrset outset;
// The chunk that follows this one (or NULL)
footer* next;

}

We avoid additional indirection by combining this metadata struct with the payload, which is essentially an array of
bytes, forming one heap object. The reason we store the metadata as a footer, at the end rather than the start, is
so that the payload grows towards the struct. Thus the pointer to the region-chunk does double duty for bounds
checking. When the payload space is full, we allocate a new chunk of double the size and point to it with next.

But what do we put in the serialized bytestream to mark that the stream continues in another chunk? Here we
implicitly add a reserved tag to each packed data type, signaling end of chunk (EOC).® When the reader hits an
EOC, they must use their pointer to the end of the current payload to access the footer, follow the next pointer, and
resume reading at the head of the next chunk.

Garbage collection In most classic treatments, regions introduced with a letregion, are deallocated immediately
upon the end of that letregion’s lexical scope. However, in this paper we choose to allow tagged indirection nodes to
include inter-region pointers. Thus one can keep a region alive beyond the scope of the letregion that introduced
it, by simply capturing a pointer to it within another region. This choice is critical to our ability to lift functions onto
(mostly) serialized representations without changing their asymptotic complexity.

In our setting, pointers between regions are immutable, which simplifies the job of garbage collection. Rather
than keeping a “remembered set” of inter-region pointers as in a generational collector, we can instead coarsen the
dependencies to record only that “chunk A points to region B”. The outset in the footer struct above tracks regions
to which our chunk points’.

60f course, there are 256 possible one-byte tags, so adding indirections, random-access nodes, and EOC tags reduces the largest sum type
supported (at least, without using an escape sequence to access additional tags).

"This set is optimized for zero or one elements. A null pointer denotes the empty set, and singleton is a direct (tagged) pointer to the
element. Two or more elements introduce a heap data structure to store the out-set.

18

Shared
refcount

First Iy
chunk IT vl

Figure 10. Example of multiple chunks making up a region, and of an inter-region indirection.

Both tracing or reference counting collectors would benefit from this coarsening. However, given that we already
amortize the overheads of memory management through coarsening, we choose reference counting for our implementa-
tion to achieve prompt deallocation (and reuse) of chunks. Thus when a region is created with letregion its reference
count is set to 1, and it is decremented on exit from the letregion. Reference counts are region-level rather than
chunk-level, which is why the footer contains a pointer to the region-level reference count, rather than a reference
count directly. When a region hits zero reference count, it is freed immediately via freeing its chunks one by one.
When a chunk is deallocated, it decrements the reference count of any regions it points to.

Comparing against prior art’s memory management Finally, in order to compare against other work, we
also implement a technique for huge regions; these are allocated as a large slab containing many pages, and could
be extended by mapping new virtual memory after hitting a guard page capping the region end. This was the
approach used by Gibbon [30]. These huge regions avoid bounds checks when writing payloads and they are suitable
for programs with a small number of large regions (especially a single input and single output region). But they are
inappropriate for the more general case where programs may have small and short-lived regions.

The choice of allocation strategy can be informed by static information the compiler gathers about the lifetime and
potential size range of the region. For example, the region-based MLKit compiler achieved significant speedups from
statically classifying a majority of regions as constant-sized [25], in which case they are allocated inside the procedure
stack frame. In our approach, we unbox constant-sized data types (e.g. numbers), and pack recursive data-types into
growable regions, so we do not observe the same opportunity for constant-sized regions.

D Appendix: formalization and type-safety proof
This section contains:

e a complete version of the typing rules and dynamic semantics, along with an example to aid in the understanding

of the dynamic semantics,

e metafunctions and correctness judgements for well formedness of the store

e and the complete proof of type safety.
Some of the rules from the type system and dynamic semantics that appear in this section do not appear in the main
body of the paper, owing to space limitations. Moreover, to make the appendix somewhat self contained, we have in a
few cases copies of rules given in the main body of the paper. In each case, we indicate what is new and what is copy.

D.1 Grammar for LoCal

The complete grammar of LoCal, along with specifications of environments and machine states used by the type
system and dynamic semantics, appears in Figure 11.

Variables and Substitution We use the convention that all variables for binding values, locations, and regions
are distinct, and maintain this invariant implicitly. The bindings sites of variables are summarized by the following:
e Variables for binding values = are bound by function definitions fd and pattern matches pat.
e Location variables [are bound by type schemes ts, pattern matches pat, and letloc binders.
e Region variables r are bound by type schemes ts, pattern matches pat, and letregion binders.
The use sites of variables are summarized by the following:
e Variables for binding varlues x are used by values v.

e Location variables " are used by concrete locations (r, i)lT, the argument list of function applications f [I"] v,
the location argument of constructor applications K I" ¥, located types 7, and located expressions le.
19

K € Data Constructors, 7€ Type Constructors,
x,y, f € Variables, [,1" ¢ Symbolic Locations,
r € Regions, 7,5 € Region Indices,

Wil .
(r,i)" € Concrete Locations

Top-Level Programs top := I\i ;f?i e
Datatype Declarations dd :=dataT=K T
Function Declarations fd == f:ts;fx =e

Located Types 7 u=7Q["
Type Scheme ts = VF‘? - T
Values v u=x|(r, i)lr
Expressions e uw=v
f]v
|K1" v

|letz:7=eine
| letloc " =leine

| letregion r ine

| case v of pat

Pattern pat ==K (ﬁ) - e
Location Expressions le == (startr)
[+ 1)
| (after 7)
Typing Env. I' == {z1- 71, ... ,Zn > Tn}
Store Typing X == {l{'r 7, ..., " > 7a}
Constraint Env. C == {l[* = le1, ..., ;" v~ len }
Allocation Pointers A == {ri—ap1, ... ,rn > apn }

whereap=1" | @

Nursery N == {[', ..., "}
Store S uz={ri—hi, ..., th> hn}
Heap h :u={ta1~Ki, ... ,in+— Ky}
Location Map M :::{lfl g (7”1,i1>, J:{" = (rn,in>}

Figure 11. The grammar of LoCal. These definitions are copies of those shown in Figures 2, 3, and 5.

e Region varaibles r are used in the same places as location variables.
We use the following conventions for variable substitution:

e ¢[v/z]: Substitute v for = in e. We let the notation extend to vectors such that e[/Z] denotes the iterated
substitution e[vy/Z1]...[Un/Tn], where n = |2 |=|v].

e e[l /"™]: Substitute location variable "™ for ;™ in e. We extend this notation to vectors of locations in the
same fashion, as described above.

e e[ry/r1] : Substitute region variable ry for r; in e. We extend this notation to vectors of locations in the same
fashion, as described above.

e Finally, we extend the aforementioned notation so that substitution can act on environments C, A, and N, e.g.,

Clk™/L™].

20

[T-VAR] [T-CONCRETE-LOC]

r'(z)=rQl" T =71 T =71
I';2:C;A; N~ A;N;z:7Q[" F;E;C;A;NPA;N;(T’,Z')l c7Q@I"
[T-LeT] ;o . , , , [T-LETREGION]
I 2, C;A;N-ASNse:m@QL™ L™ eN L™ ¢EN , Y, P
T2 C;A N - A" N": e : QL™ L™ eN r;2;C;A N+ A";Ne:7Q] I eN
'Y, C;A;N-A"; N let x:1QlL"™ = e; in ey : 2@ I;%;C;A; N+~ A"; N';letregion r in e:T@l/T,
where I =Tu{zwmQ@L"}; X' =2u{L" »1} where A"= Au{r @}

[T-LETLOC-TAG]

Ay =" T eN TgNT el
;2 ¢ AN - A";N" e T”@ZHT”
I;2,C;A;N - A";N";1etloc "= (I"" +1) ine: T’l@lw"
where C'=Cu{l"» "+ A =Au{r1"}

N'=Nu{l"}

[T-DATACONSTRUCTOR]

TypeOfCon(K) =1 TypeOfField(K 1) = :1;
I"eN A(r):? ifn+0 elsel”
C)=U+1 Ol = (atter (L))
I 2 Ci AN - A N3 T s rlal’

[T-LETLOC-AFTER]
A(r)=bL" ST =7 W ¢N U¢N" Ul
F;Z;C/;A';N'l—A";N";e:T'@l'r, l'rr eN
I';X:C;A; N+~ A";N";1etloc I” = (after 7@l ") ine: 7' QI 5 C AN AN KU T ral
where C' = Cu{l"— (after 7@QL")}; A'=Au{r~1"}; where A" = AU{ro 0"} N'=N—{I'}
N'=Nu{l"} n=|vljiel={1,...,n};jel-{n}

Figure 12. Copy of typing rules in Figure 4

D.2 Typing rules for LoCal

The complete typing rules are contained in two figures. In Figure 12, there is a copy of the typing rules in Figure 4.
The rules not shown in the main body, namely those for function application, pattern matching, function definition,
and program top-level, are given in Figure 13.

Function application in T-APP ensures the location of the result of the application is initially unwritten, and is
considered written afterward. Types and locations for the function are pulled from the function signature. Pattern
matching is handled by T-CASE and T-PATTERN, which are straightforward. Similarly, typing the top-level forms is
straightforward.

To simplify the formalism and proofs, we restricted typing rules somewhat so that, in effect, the rules restrict
well-typed expressions so that they can return only the the result of a freshly allocated constructor application.
Consequently, it is not possible, for instance, to type the following expression, because the right-hand side is a value
and, as such, does not allocate.

let x : T@QU[" = y in

This restriction is enforced by there being an assertion of the form [” € N in the premise of the typing rules of the
non-value expressions, such that 7@[" is the result type of the given expression. Lifting this restriction is conceptually
straightforward, but would require either added complexity to the substitution lemma or could be achieved by using a
different factoring of the grammar and typing rules. Similarly, our formalism and proofs could be extended to treat
primitive types, such as ints, bools, tuples, etc., as well as with offsets and indirections in data constructors, with
some conceptually straightforward extensions to the formalism.

21

[T-LETLOC-START]
A(r) = "¢ N" l’r, 1" " eN 2, ¢ AN A" N" e: Q"

I';%;C;A; N+~ A"; N";letloc " = (start) ine: T,@l”,
where C' = Cu{l" = (startr)}; A = Au{r—1"};
N =Nu{l"}

[T-App]
=1 vl =T
I';X:C;A; N+ A;N; v : QL I"eN A(r)y=1"
VR P S T NI A B W LA (A AN L 4

—

I';2:C;A;Nr-A;N'; f [l”"] W TQl"

where f: Vﬁ.n@l{"d” - T@l'"TW; (fx = e) = Function(f)

"r

! , -
N'=N-{I"};n=|v]ie{l, ... ,n}

[T-PATTERN]

TypeOfCon(K) = 7" ArgTysOfConstructor (K) = 7' 2N =1

lratlim, ' % C,A4;N+A;N:e:rQl"

T-CASE " ’ ’ g’ r
[] - 7505, C5A;N bpar AN K (7 Q7) > e:7Q]
I';2;C;A; N A;N;v:7 Q@ I"eN L — L —
75, C; A; N vpar A'; N';pat; : 7@Q1" where I =T'u{z; » mQl" , ...z, ~71,QL" }

—

’ ’ —_—
! T ! T !
Y=xXu{ly 1, ...l 1.}

where n:|@\; ie{l,...,n} ie{l,....n} n=|7"|=|z: 7@l

;% C; A; N+~ A'; N'; case v of pat : 7@["

[T-FUNCTION-DEFINITION]
I';X:C;A; N+ A;N';e:7Q1" I"¢ N’

—
_

Vie(roony-33-67 = 7 3507 =40

7

Ffun f V;:,.T@lr S>7QI" fZ =e [T-PROGRAM]

Ffunﬁ F7Z7C7A7NFA’7N,,€T@ZT

where I' = {z1 » QL™ ... |Z, » 7,QL, "™ }

Y={h"wm,. .. LT} Forog AGN' dd 3 fd s e:TQI
C=®,A={T'—>lr},N={lr}, where FZQ;TEZQ 4 - -
n=|T|=|ral| C={l"rm(startr)}; A={r—10"}; N={I"}

Figure 13. Remaining typing judgements for LoCal

D.3 Dynamic semantics rules for LoCal

Figures 14 and 15 complete dynamic semantics of LoCal. In the following, we explain the rules shown in Figure 15,
which do not appear in the main body of the paper. The D-Let-Expr rule for let-expressions evaluates the let-bound
expression to a value and the D-Let-Val rule substitutes the value for the let-bound variable in the body. The D-App
rule for function applications looks up the function by name in the top-level environment and substitutes arguments
for parameters in the function body, substitutes argument symbolic locations for parameter symbolic locations, then
starts the resulting function body running. The D-LetRegion rule for the letregion expression binds the new region
and starts running the body.

The driver which runs an LoCal program initially loads all data types, functions, type checks them, and if successful,
then seeds the Function, TypeOfCon, and TypeOfField environments. Let ey be the main expression. If ey type
checks with respect to the T-Program rule, then the main program is safe to run. The initial configuration for the

22

[D-DATACONSTRUCTOR] [D-LETLOC-START]
S:M;K1l" v = S';M;(r,i)lr S;M;letloc!” = (start r)ine= S; M';e

where S'=Su{re (i~ K)}; (r,i)=MU") where M'= M u{l"+~ {r,0)}

[D-LETLOC-AFTER]

[D-LETLOC-TAG] .) S;M;letloc " = (after 7QL) ine = S; M'; e
S;M;letil.ocl :lr+11ne:>S;M;e B where M’ = M U{I" > (r,4) }; {r,i) = M(LL")
where M' =M u{l" — (r,i+1)}; (r,i) =M{") Ti(r,i); S Few (T,])

[D-CAsE]

S;M;jcase (r, i) of [...,K (z:7QI") > e,...] =
S:M'sel(r,)" /7]

where M = Mu{l] » (r,i+1),...,01i1 ~ (r,wm)}

ﬁ;(T,i+1);SFew (r,w1)
AN N
Ti1; {7, W5)5 S Few {7, Wj11)

K=8(r)@);je{l,....n-1}; n=|z: 7|

Figure 14. Copy of dynamic semantics shown in Figure 6.

[D-LET-EXPR]
S;Mier = S's M5 el e1# v [D-LET-VAL]
SiM;letx:7=e ines =S5 M ;letz:7=ej in e S;M;letz:7=wv in e = S; M; ea[v1/x]
[D-APP]

SiM; f (U] = 8 M e[W/FIT /")
where fd = Function(f) [D-LETREGION]
=T — S; M;letregionrine = S; M;e
fiV—.7r > 7 (f T =e) = Freshen(fd)
ll’V‘

Figure 15. Remaining dynamic semantics for LoCal

machine with an empty store is
@; {1+~ (r,0) }; e,

which is, by itself, not particularly interesting or useful. It is, however, straightforward to construct a type-safe initial
configuration whose store is nonempty, as long as the initial configuration has a store that is well formed, as described
in §D.5. The program can start taking evaluation steps from this configuration.

D.3.1 Example: allocating a binary tree.
Consider this code snippet of LoCal.

letloc 11" = lp" + 1 in

let a : Tree @ [= (Leaf [1") in

letloc lo" = (after (Tree @Q [1")) in

let b : Tree @Q 3" = (Leaf [2") in

Node lp” a b

Assume that the store starts out with a fresh heap, S = {7~ @} and the location lo" maps to (r,0) in the location
map. After stepping past the first line, the D-LetLoc-Tag step has allocated a cell for the tag of the interior node and
bound the location §;" to {(r,1). After the next line, the D-DataConstructor transition writes a leaf node to the store
at the address represented by §;": S = {r+— {1+~ Leaf } }. The second letloc obtains the starting address for the
second leaf node by using end witness of the previous leaf node. The write of the second leaf node appears in the store
after the next line, leaving the following store: S = { r = {1 Leaf,2 — Leaf } }. Finally, after the D-DataConstructor
step taken for the last line, the store contains the finalized allocation: S = { r ~ {0+ Node,1 — Leaf, 2~ Leaf } }.
23

Table 3. Summary of judgements used to establish well formedness of the store.

Judgement form Section Summary
Store Y, CA;N by M5 S D.5 The store S along with location map M
well formedness are well formed with respect to typing

environments Y, C, and A.

End witness Ti(r,is); S Few (7, %) D.5.1 The store address (r, .) is the position
one after the last cell of the tree of type
T starting at (r, ;) in store S.

Constructor- Cruwfp,. M5 S D.5.2 All in-flight data-constructor applica-

application tions in store S along with location

well formedness map M are well formed with respect
to constructor-progress typing environ-
ment C.

Allocation A; N vy, M3 S D.5.3 Allocation in store .S along with location

well formedness map M is well formed with respect to
allocation-typing environments A and
N.

The end-witness judgement of the new data constructor is the following: Tree;(r,0);S Fey (7,3) The judgement
applies, in part, because, as expected, the tag at the address (r,0) is a tag of type Tree. In addition, because the tag
indicates an interior node with two subtrees for fields, the judgement obligation extends to recursively showing (1)
that the end witness of the first leaf node (also at type Tree) at (r,1) has an end witness (which is (r,2)), (2) that
the second field has an end witness starting at the end witness of the first field, namely (r,2), and ending at some
higher address (which in this case is (r,3)), and (3) finally that the end witness of the second field is the end witness
of the entire constructor, as is the case here.

D.4 Global environments and metafunctions
e Function(f): An environment that maps a function f to its definition fd.
e Freshen(fd): A metafunction that freshens all bound variables in function definition fd and returns the resulting
function definition.
e TypeO fCon(K): An environment that maps a data constructor to its type.
o TypeOfField(K,i): A metafunction that returns the type of the i’th field of data constructor K.
o ArgTysO fConstructor(K): An environment that maps a data constructor to its field types.
o Mazldx(r,S): max{-1}u{j|(rm(j~»K))eS}.

D.5 Well-formedness of the Store
The well formedness of the store is defined by the top-level judgement
2y C AN =y M S
whose definition itself uses three other judgements. All of these judgements are summarized in Table 3.

Notation for references to well-formedness judgements Because there are many requirements specified inside
the various well-formedness judgements, we introduce notation for referring to requirements individually. For example,
the notation WF D.5.3;2 refers to the judgement

A;N '_wfca M;S,

specified in Section D.5.3, and in that judgement, rule number 2.
The definition of store well formedness follows.
24

Judgement form X;C;A;N vy M;S

The well-formedness judgement specifies the valid layouts of the store by using the location map and the various
environments from the typing judgement. Rule 1 specifies that, for each location in the store-typing environment,
there is a corresponding concrete location in the location map and that concrete location satisfies a corresponding
end-witness judgement. Rules 2 and 3 reference the judgements for well formedness concerning in-flight constructor
applications (§D.5.1) and correct allocation in regions (§D.5.3), respectively. Finally, Rule 4 specifies that the nursery
and store-typing environments reference no common locations, which is a way of reflecting that each location is either
in the process of being constructed and in the nursery, or allocated and in the store-typing environment, but never
both.

Definition

1" 1)e X >
((I" > (r,4)) e M A
Ti{r,41); S Few (7, 02))
2 C '_wfcfc M;S
3 A;N Fyy., M3 S
4 dom(X)nN =g

D.5.1 End-Witness judgement

Judgement form 7;(r,is); S Few (7, %)

The end-witness judgement specifies the expected layout in the store of a fully allocated data constructor. Rule 1
requires that the first cell store a constructor tag of the appropriate type. Rule 3 specifies the address of the cell one
past the tag. Rule 4 recursively specifies the positions of the constructor fields. Finally, Rule 2 specifies that the end
witness of the overall constructor is the address one past the end of either the tag, if the constructor has zero fields,
or the final field, otherwise.

Definition
1 8(r)(is) = K" such that
datat=K 71 | ... |K'7T"| ... | K Tm

2 wo =i+ 1

3 715 (r,wo); S ew (1, wiA
TJ,‘+1; <Ta17J\'); S Few (r7wj+1)

—_

where je{1,...,n-1};n=|7|
4 ie:w_\n

D.5.2 Well-formedness of constructor application
Judgement form Ctyy,,. M;S

The well-formedness judgement for constructor application specifies the various constraints that are necessary for
ensuring correct formation of constructors, dealing with constructor application being an incremental process that
spans multiple LoCal instructions. Rule 1 specifies that, if a location corresponding to the first address in a region is in
the constraint environment, then there is a corresponding entry for that location in the location map. Rule 2 specifies
that, if a location corresponding to the address one past a constructor tag is in the constraint environment, then there
are corresponding locations for the address of the tag and the address after in the location map. Rule 3 specifies that,
if a location corresponding to the address one past after a fully allocated constructor application is in the constraint
environment, then there are corresponding locations for the address one past the constructor application and for the
address of the start of that constructor application in the location map, as well as the existence of an end witness for
that fully allocated location.

Definition

1 ("~ (startr))e C =
("~ (r,0))eM
25

2" ({""+1))eC =
(I'"" = (r,i)) e M A
("= (r,qg+1))eM

3 (I"~ (after 7QI""")) e C =
(""" = {r,i1)) e M A
Ti(r,11); S Few (r, i) A
(I" = (r,i2)) € M)

D.5.3 Well-formedness concerning allocation
Judgement form A;N v,y M;S

The well-formedness judgement for safe allocation specifies the various properties of the location map and store that
enable continued safe allocation, avoiding in particular overwriting cells, which could, if possible, invalidate overall
type safety. Rule 1 requires that, if a location is in both the allocation and nursery environments, i.e., that address
represents an in-flight constructor application, then there is a corresponding location in the location map and the
address of that location is the highest address in the store. Rule 2 requires that, if there is an address in the allocation
environment and that address is fully allocated, then the address of that location is the highest address in the store.
Rule 3 requires that, if there is an address in the nursery, then there is a corresponding location in the location map,
but nothing at the corresponding address in the store. Finally, Rule 4 requires that, if there is a region that has been
created but for which nothing has yet been allocated, then there can be no addresses for that region in the store.

Definition

1 ((r—1")eAAl"eN) =
((I" > (r,i)) e M A i > Maxldz(r,S))

2((r=1")e AN ("> (ris)) e MAIT ¢ NAT;(r,is); S bew (T, 0e)) =
ie > MaxIdz(r,S)

3["eN=>
((I" > (r,i)) e M A
(rm (i K)) £ 5)

4 (r>a)eAd=>
r ¢ dom(S)

D.6 Technical lemmas

Lemma D.1 (Substitution lemma)

If I’U{SE—IHF{@F,...,:C—;Hﬁ@ln—r:};ﬂ;C;A;NI—A';N’;@:T@V
and F;E";C';A';N'I—A';N';Ti:?i@li'd ie{l,....n}

—

then I35 C5 AN v A" N" e[/T /T[0T)] ral™

where X =Xou{h™ »T7,... " > Ty}
”
nr 144
and V(ZE'—)T”@l”T”)Gp.(l =T € 20

and dom(X)nN =g
and N =Noul"

’ ’
T — T,
and X' =X u{l{"" T, 0"

n " T)

and C'=C[")T 1]

and A = AL T)]
and N'=N[I'"" /i"]

PROOF The proof is by rule induction on the given typing derivation.
26

Casg T-Var, T-Concrete-Loc

These cases discharge vacuously because the corresponding typing judgements cannot establish that the expression
e has type 7@[", as required by the premise of the lemma. The reason is that the premise of the lemma also
assumes that {" € N and dom(X) n N = @, but by inversion on the respective typing judgements, it must be that
(I" » 7) € X, thereby resulting in a contradiction.

CASE
[T-DATACONSTRUCTOR]
TypeOfCon(K) =1 TypeOfField(K, 1) :;1'7
I"eN A(r)=1," ifn+0 elsel"
C(h)=1"+1 C(b') = (after (7, 0L"))
r; C;A;NI—A;N;E:@;
2 CiANFAN K™ v 7Q]"
where A'= Au{r~1"}; N'=N-{I"}
n=|v|;iel={1,...,n};jel-{n}

By inversion on the typing judgement, there are three proof obligations for this case. The first one concerns the
subtitution of location {", which changes the type of the term e from T7@I[" to 7@I"" . The specific obligation is
to establish that all uses of I in the typing judgement are properly substituted by I T’, thereby satisfying the
corresponding parts of the typing judgement that need to reflect the change in the result location. The uses of [”
in the typing judgement are the first argument of the constructor application, the result type, the constraint
environment C, and environments A, N, A’ and N'. The corresponding updates are established by inspection
of the various substitutions in the consequent of the lemma, which affect e and the typing environments. The
second obligation concerns the locations used by the typing judgement in C, each of which is substituted as
needed in the environment C’.

The third and final obligation is to establish typing judgements required by the premise of T-DataConstructor
that concern the arguments of the constructor application. To dlbtlnglﬂbh the constructor arguments from

the values ¥ that are being substituted, let the constructor arguments be v’, and m = |v'| Then the specific
obligation is to establish the typing judgements

_\

I35 AN = AN o[0T 0T)]s)
for all ke {1,...,m}, and for some suitable corresponding locations /;". Each value ;,;\ is either a variable or a
concrete location.

e Case vj, = y, for some variable y:

— Case y = :F;, for some j:
Now, the obhgatlon is to establish that the value resulting from the substitution of y, namely v], has

type Tk@l,r From the premise of the lemma, we have that

r;xcA N+ A N’;F; : F;@ljl-r,
and, moreover, by inversion on T-DataConstructor, we can conclude that ?; = 7, thereby establishing
that

r;x,C AN+ A;N'; EJ\ : T,::@ZJ(T,
and thus discharging this case.
— Case y # x—;, for all j:
This case discharges immediately by implication of the typing judgement of the source term given in the
premise of this lemma, and by inversion on T-Var.

27

e Case v], = (r,i")!"", for some location I"", i""
— Case """ = ;" for some j:
The specific obligation is to establish the type of the concrete location affected by the substitution of the
location {"" for Z]{r, that is,

r; 2 c' AN - A" N'; (r, Z'"')lfm : T];@ZJI'T.

The above follows from the facts X'(1/") = 7; and 7; = 7/, using similar reasoning to the previous case,
thus discharging this case.

— Case """ =1":
Impossible, because I”" € dom(X), but from the premise of this lemma, I” € N and dom(X)n N = @.

— Case """ # [;", for all j, and I"" # "
This case discharges straightforwardly because, by inversion on T-Concrete-Loc, (I"" + 7"") € ¥, thus
implying that (I”" ~ 7)€ X', as needed.

CASE
[T-LET]
I %,C;A;N- AN e @™ [™eN L™ ¢N'
FI; EI; C; AI; N+ A"; N"; € : 7_2@12?“2 127'2 eN
I: X, CiA;N+-A":N"let x: QL™ = ¢; in ey : 2@l
where I =I'u{zw—nQh" }; X' =X u{L" » 1}

This case discharges via straightforward uses of the induction hypothesis for the let-bound expression and the
body.

CAske T-LetRegion, T-LetLoc-Start, T-LetLoc-Tag, T-LetLoc-After, T-App, T-Case
These remaining cases discharge by similar uses of the induction hypothesis.

Lemma D.2 (Progress)
if 3,5, C;A;N-A";N':e:7
and X; C; Ay N vy M3 S
then e value
else S;M;e= S":M';¢e
PrOOF The proof is by rule induction on the given typing derivation.
CASE

[T-DATACONSTRUCTOR]

—_

TypeOfCon(K) = TypeOfField(K i) = 1,
I"eN A(r):? ifn+0 elsel”
ChT)=1"+1 C(hn') = (after (7/Ql"))
I3 C AN - AN ral
%, C;A; N+ AN K" v :7Q["

where A"=Au{r—I1"}; N'=N-{I"}
n=|vl;iel={1,...,n};jel-{n}

28

Because e = K I” W is not a value, the proof obligation is to show that there is a rule in the dynamic
semantics whose left-hand side matches the machine configuration S; M;e. The only rule that can match is
D-DataConstructor, but to establish the match, there remains one obligation, which is obtained by inversion
on D-DataConstructor. The particular obligation is to establish that (r,i) = M (I"), for some i. To obtain this
result, we need to use the well formedness of the store, given by the premise of this lemma, and in particular
rule WF D.5.3;3. But a precondition for using WF D.5.3;3 that the location is in the nursery, i.e., [" € N. This
precondition is satisfied by inversion on T-DataConstructor. Our application of rule WF D.5.3;3 therefore yields
the desired result, thereby discharging this case.

CASE

[T-LETLOC-AFTER]

A(ry=h" S(W")=7 LTEN U¢NT el
;% CI;A,;NII—A”;N”;CIT,@ZIT, " N
I';2;C;A4; N+ A”; N";letloc I = (after 7’@Q}L ") in e Far”
where C'= Cu{l"w (after7QL") }; A'=Au{r—1"};

N'=Nu{l"}

Because e = letloc (" = (after 7'@Ql;") in ¢’ is not a value, the proof obligation is to show that there is a rule
in the dynamic semantics whose left-hand side matches the machine configuration S; M; e. The only rule that can
match is D-LetLoc-After, but the match is dependent on two further obligations, which are implied by inversion
on D-LetLoc-After. The first one is to establish that (r,i) = M (4,"). To do so, we need to use rule WF D.5;1
of the well-formedness of the store. This rule requires that X'(};") = 7/, which is established by inversion on
T-LetLoc-After. As such, we have (I ~ (r,i)) € M, as needed. The second and final obligation is to establish
that, for some j, 775 (r,i); S Few (r, 7). Again, we use well-formedness rule WF D.5;1 to discharge the obligation,
and thus this case.

CASE T-LetLoc-Tag
Similar to the previous case.

CASE T-LetLoc-Start, T-LetRegion, T-App
These cases discharge immediately because D-LetLoc-Start, D-LetRegion, and D-App match their corresponding
machine configurations unconditionally.

CASE T-Var, T-Concrete-Loc
These cases discharge immediately because e is a value.

CASE

[T-LET]

I %,C;A;N- AN e @™ [™eN L™ ¢N'
I Y':C;A N+ A" N";e5: QL™ L™ eN
I: X, CiA;N+-A":N"let 2 : 11QL"™ = ¢; in ey : 2@l

where I"=Tu{zmQL"}; X =Yu{"™ w1}

Because e = let x: 7@} = ¢; in ey is not a value, the proof obligation is to show that there is a rule in
the dynamics whose left-hand side matches the machine configuration S; M;e. If e; is a value, then the rule
discharges immediately because D-Let-Val matches e unconditionally. Otherwise, if e; is not a value, then the
only other rule that can match is D-Let-Expr. To match D-Let-Expr, the only requirement is to match the
left-hand side of the rule S; M;e; = S’; M'; ef in the premise, for some S’, M’, and e]. To obtain this result, we

29

need to use the induction hypothesis, which is in this instance
if ;2:C;A;Nv+ A";N';e;: 7@QL"™
and X5 C; AN =y M; S
then ey value
else S;M;e; = S'; M';e].
By inversion on T-Let, we have @; X; C; A; N = A’; N'; e; : ;@™ and, from the premise of this lemma, we have

Y, Cy AN =y M;S. Thus, by the consequent of the induction hypothesis, we have that either e; is a value
(which we have already ruled out) or that S; M;e; = S’; M’; ef, thereby discharging this case.

CASE
[T-CASE]
I'' Y, C;:A; N A;Nyv:7Ql'" "eN
025 Cy Ay N par A N pat; - 7QIT
r;x; C;A;Ni—A';N’;casevofgmzr@lr

where n:|ﬁ|; ie{l,...,n}
and

[T-PATTERN]
TypeOfCon(K) = 1" ArgTysOfConstructor(K) = 7' Yy =1
Ul TS C AN - AN e r@l

7y, C; AN Fpar AN K (QCZTI@IIT,) - e:TQ["

-~ = -~
N r N ’
where I'"=Tu{z;~1Ql , ..., z2,>7,Q" }
’ — ’ —_—
T T
Y=Xu{ll »1,. . I T}

ie{l,....n}; n=|7|=|z:7'Ql

Because the given expression e = case v of ﬁ is not a value, the proof obligation is to show that there is a
rule in the dynamic semantics whose left-hand side matches the machine configuration S; M; e. The only rule
that can match is D-Case, and there are thre,e requirements to match D-Case. The first of which is that the value
v is a concrete location of the form (7', i)l” . Any value v is, by inspection of the grammar of LoCal, either a
variable or a concrete location. But because v is well typed with respect to the empty typing environment I' = &,
the value v cannot be a variable in this instance, owing to inversion on T-Var and T-Concrete-Loc, thereby
ensuring v is a concrete location, and thus discharging this requirement. The second requirement for D-Case is
that the tag is in the expected location in the store, i.e., S(r')(i) = K. To satisfy this requirement, we start by
using the jugement X; C; A; N -,y M; .S, from the premise of this lemma, and in particular, unpacking from
this judgement the property EW D.5.1;1. To use this property, we need that (l’rl ~ 7') € X, which is given by
inversion on the given typing rule T-Case. From the unpacking, we obtain that

(I o (i) € M)A (1)
T (r' 1) S Few (', 4). (2)

From the end-witness judgement, in particular, EW D.5.1;1, we establish that S(r")(4) = K, thereby discharging
the second requirement. The third and final requirement for D-Case is that the arguments succeeding the tag are
in the expected locations, i.e.,

T1{r i+ 1); 8 Few (7', W01) A

—_
[

Tg,'+1? (1"’7 @)» S ew <7J7 wj+1>

30

The above is established by expanding the judgement obtained in 2, namely 7';(r',i); S Feqp (7, 4'), using in
particular, the end-witness rule EW D.5.1;3 to obtain the needed judgements. This final requirement discharges

the case.

Lemma D.3 (Preservation)

If 3:X:C;A;N+-A";N":e: 7
and X5 C; Ay Ny M; S
and S;M;e= S"; M'; e
then for some X' 2 X,C'2 C,
2,2 C' AN - A":N"; ¢ : 7
and X' C"; A's N vy M'; 87

PROOF The proof is by rule induction on the given derivation of the dynamic semantics.

CASE

[D-DATACONSTRUCTOR]

S;M:K 1" 0 =8 M;(r,i)"
where ' =Su{re (i~ K)}; (r,i)=M(U")

e The first of two proof obligations is to show that the result e’ = (r, i)lr of the given step of evaluation is
well typed, that is,

@; 5 0 AN = A" N (o, i)lT : T,

where 7 = 7@Q[". As implied by inversion on T-Concrete-Loc, the only obligation is to establish that X'(I") = 7.
This obligation discharges by appropriately instantiating typing environments: X' = Y u {[" — 7}, so that
X'2X¥ and X'(I") =7, and C' = C, so that C' 2 C.

e Given the instantiations of X’ and C’ used by the previous step, the second obligation for this proof case is
to show that

X' C AN Fuwf M:S'.

The individual requirements, labeled WF D.5;1 - WF D.5;3, are handled by the following case analysis.
— Case (WF D.5;1): for each (I'" + 7) € X’ there exists some iy, i such that

(I o (i) € Ma (3)
Ti(r' i) S Few (', i2) (4)

The first conjunct above discharges by inversion on D-DataConstructor, but to establish the second

one, we need to distinguish between the case in which the given location I’" is the one affected by the
constructor application, or not.

*

Case I'" =1":

For this case, the obligation is to show that the constructor being allocated by the constructor application,
namely [”, has the end witness given above. As such, for this case, it is the case that ' = r and 4 = 1,
which is a consequence of inversion on D-DataConstructor. To establish the end witness, the first
obligation therein, namely EW D.5.1;1, is to establish S’(r)(¢) = K. This obligation discharges by
inspection of S/, which is obtained by inversion on D-DataConstructor. The second part is to establish
the requirement EW D.5.1;3 of the end-witness judgement, which pertains to the arguments passed to

the constructor. The specific obligation is, if n = |7| > 1, then

—_

Ti{ry i+ 1)58 Few (7,01) A (5)
Tj{+1§(r7@>§8, Few (Tawj+1> (6)

for some w, where j e J = J'~{n},j e J ={1,...,n},and 7’ = ArgTysOfConstructor (K). To establish
the above, we need to reason backward from what the corresponding typing rules establish regarding the
31

arguments passed to the constructor application. First, we establish that, for each location corresponding
to a constructor argument [, there is a corresponding mapping in the store-typing environment, i.e.,

(l]T, — TJ(,) € Y. To establish these mappings, we first obtain by inversion on T-DataConstructor that
the constructor arguments are well typed:

@; X, C; A;N = A; N vy : 7, Q"

Each value E: is either a variable or a concrete location, and as such, by inversion on the typing
rules T-Var and T-Concrete-Loc, respectively, we establish the required mappings in Y. Thus, we can
now combine the well-formedness of the store in the premise of this lemma, in particular requirement
WF D.5;1, with the mappings of constructor arguments in X to establish the end witnesses in ¢
corresponding to the constructor arguments:

(I = (r,iy7)) € MA (7)
i r5)3S Few 7y iyre1) (8)

We first address the obligation pertaining to the first constructor argument, and then the remaining ones.
From inversion on T-DataConstructor, we establish a mapping for the location of the first constructor
argument.

C(l)=10"+1
Now, using this result, we can establish from well formedness rule WF D.5.2;2 that the following
mappings exist in the location environment.
(I" = (r,i)) e Ma
(I »(ryi+1))eM

Next, combining the fact from line 7 above regarding i, the end witness corresponding to 4 from the
end witnesses of constructor arguments line 8 from above, we establish the requirement on line 5 above,
such that wy = 41, i.e.,

713y i+1)58 ey (7, w71). (9)
For the remaining constructor arguments, the structure of the proof is similar. We establish mappings
in C for the locations of these constructor arguments by inversion on T-DataConstructor.

C(I,) = (atter 7/Q1)

The following end witnesses " are established by combining the property on the constraint environment
with the property WF D.5.2:3, which is obtained from the well formedness of the store in the premise
of this lemma.

(I = (r,5)) € MA

"
J

5 <T’, ij); S Few <T’, §+1>/\

(i1 = (74541)) € M)
To isolate the indices of any constructor arguments succeeding the first argument, we let j” € J - {1},
and thus deduce from the above that the end witnesses

TJ(//+1; <7“, ’ij//+1>; S Few (7”, ijlg_g).

exist. We obtain the needed result for the remaining end witnesses by instantiating for w, yielding

[

T;”+1;<Tam>§s Few <Tawj”+1)- (10)

The original end witness required by 4 is now established by letting ¢ = ¢ and i = wp41-

Finally, to discharge this case, the end witnesses of the constructor arguments established in lines 9

and 10 need to hold for the new store S’ =S u{r~ (i » K) }. To this end, in S’, the newly written
32

tag at address ¢ cannot overlap with the cells occupied by any of the constructor arguments. Therefore,
the desired end witnesses exist in S/, thereby discharging this case.

x Case I'" #1I:)
This case requires we establish that, for such a given location I’", its corresponding end witness in

the original store S also exists in the new store, S’, that is, supposing (l’r’ ~ (r',41)) € M, then
Ti{r',41); S Few (1, 42) implies 7; (1, i1); 5" Few (7', i2). But the only way that any such end witness
can be invalidated is if the write of the constructor tag at index ¢ in S’ = Su{r~ (i » K) } affects
any address in the end witness corresponding to location I’ T,, that is, any address in the right-open
range [4,42). The proof obligation therefore amounts to ruling out aliasing, that is, ¢ falling in the
range [i1,42). To this end, we start by working backwards from the typing of the location [", which
corresponds to address 4, the (only) address written by the constructor application. By inversion on
T-DataConstructor, we establish that " € N. As such, given the well formedness of the store S in the
premise of this lemma, we obtain from WF D.5.3;3 that (r — (i » K)) ¢ S. However, by the end-witness
rule, for each j €[4, iz), there exists a mapping from the address in the original store to its constructor
tag K;, which is (r = (j = Kj)) € S. Therefore, the end witness judgement remains valid in store S’,
thus discharging this case.
— Case (WF D.5;2):

C '_wfcfc M; S,

The first two proof obligations of this judgement, namely WF D.5.2;1 and WF D.5.2;2, discharge
immediately, because the environments used by these rules are unaffected in a data-constructor application.
The only remaining obligation is WF D.5.2;3, because that requirement is affected by the write of the
constructor tag, which is reflected in the new store S’. The obligation is to establish the preservation of
the end witnesses of the locations in the domain of C. A similar proof obligation was already addressed
by the proof of Property 4, in particular the subcase for I’ " 41" The only difference in that case is the
locations range over the domain of the store-typing environment Y, whereas in this case the obligation
concerns locations in the domain of the constraint environment C. However, the same proof steps apply

in both cases, thus discharging this case.
— Case (WF D.5;3):

A" N 5., M; S

Obligations WF D.5.3;1 and WF D.5.3;3 discharge immediately because I” ¢ N’. It remains to discharge
the obligation corresponding to WF D.5.3;2. Because it is the case that

(re>0")e AN (ryi))e MAL" ¢ N'AT(r,i1); S Few (7, 02),

the obligation amounts to showing that the end witness of the constructor application is the new highest
address in the store 5’| i.e., io > Mazldz(r,S"). There are two cases, based on the number of constructor
arguments n:
* Case n =0:
We need to appeal to the well formedness of the store, as given by the premise of this lemma, and in
particular rule WF D.5.3;1. To use this rule, we need to first establish (r — ") € A and " € N, which
follows immediately by inversion on T-DataConstructor. It therefore follows that

i1 > Mazldx(r,S).

From this property, and by inspection on S’, we discharge this case by establishing that the end witness
of the constructor application is the highest address allocated in the new store S’, i.e.,

i1+ 1 =1y > Mazldz(r,S").

* Case n > 1:
To discharge this case, we need to show that the end witness of the last constructor argument, i.e.,
the one at position n, is the highest address in the new store S’. This obligation follows from the well
formedness of the store S given by the premise of this lemma, and in particular the application of rule
33

WF D.5.3;2 to the end witness of the last constructor argument, i.e.,
(re1")YeAn (I7 = (r,w,)) € M AT (1,0,); S Few (T, Wnit)

The first two conjuncts follow from inversion on T-DataConstructor and T-Concrete-Loc, respectively,
and the final one from Property 10. Thus, we have that w1 > MazIdz(r,S). It follows that w,,; >
MazIdz(r,S"), because the newly written address in S’, namely i, is such that i; < wp,1. By defintion
of the end witness, we discharge this case by establishing that w,,; = iy > MazlIdz(r,S").
The final obligation of this case concerns the requirement WF D.5.3;4. Part of this obligation is given by
the premise of this lemma, for the original store S, and yields in particular that, for each ('~ @) € A, it
is the case that r’ ¢ dom(S). The remaining obligation is to show the property holds for the new store S’,
which discharges immediately because, although r € S’, by inversion on T-DataConstructor, it must be
that (r — @) ¢ A.
— Case (WF D.5;4):
dom(X')nN' =g
From the premise of the lemma, we have that the store is well formed with respect to typing environments
XY and N, and as such, we have that dom(X) n N = @. Therefore, we discharge this case by inspection of
typing rule T-DataConstructor, which shows that N' = N - {[}.

CASE
[D-CASE]
S;M;case (r,i) of [...,K (z:7QI") —» e,...]>
§:M'sel(r. @) /7]
where M’ =M U{ = (r,i+1),...,0, = (r, w551 }
Tri{r, i +1)58 Fey (7, w7)
Tie1; (1, w05); S Few (7, W5a1)
K=8)G);jell,...on-1}; n=|z:7|

e The first of two proof obligations is to show that the result e’ = e[(r, w)" /7] of the given step of evaluation
is well typed, that is,
@; X' CiA;N - AjNse' = 7,
where 7 = 7@[". To establish the above, we start by obtaining the type for the body of the pattern, then
the types of the concrete locations being substituted into the body, and finally use these two results with
the substitution lemma to discharge the case. First, by inversion on the typing rules T-Case and T-Pattern,
we establish that the body of the pattern, namely e, is well typed, i.e.,

I' 2 C;A;N - A; N e:7Q1",

where
I'={z1~»7QL",... 51 »7,Ql," }
Z,:ZU{llrl—)?l,...7lnrH?n}.

Second, we establish that the concrete locations being substituted for the pattern variables = are well
typed. The specific obligation is, for each i € {1,...,n}, to establish that

2,5 C; AN v A; N (r, @) - 7aQl

The above holds because, by inversion on T-Concrete-Loc, the obligation is to show that, for each such 4,

—_T
(l; = 7)) €X', which is immediate by inspection on X’ above. Third, and finally, to establish the typing
judgement for e, we use the Substitution Lemma D.1, which yields

@; 5 C; AN = A; N e[(r,w) [z]. . [(ryon) ™ J20] : 7,

as needed, thereby discharging this obligation.
34

e The second obligation for this proof case is, given the affected environments, namely X’ and M’, to establish
the well formedness of the resulting store, i.e.,
Y Cy AN by M5 S.

We omit most of the details of this proof obligation because they discharge straightforwardly. The only part
that requires attention is rule WF D.5;1, which is affected by the fresh locations in the location environment
M’. This requirement discharges by inspection of D-Case, thereby discharging this obligation.

CASE
[D-LETLOC-TAG]
S;M;letloc!"=1""+line= S;M';e
where M' = M u{1" v (r,i+1)}; (r,i) = M(1'")
e The first of two proof obligations is to show that the result e of the given step of evaluation is well typed,
that is,
@, 2,C" AN A" N";e: 7,

where 7 =7QI", A’ = Au{rw~ 1"}, and N’ = Nu{l"}. This proof obligation follows straightforwardly by

inversion on T-LetLoc-Tag.
e The second obligation for this proof case is to show that

X, C AN vy M5 S.
The individual requirements, labeled WF D.5;1 - WF D.5;3, are handled by the following case analysis.
— Case (WF D.5;1): for each (I’ = 7) € X, there exists some iy, 75 such that
(I'" = (r,i)) e M'A
Ti{r,i); S Few (T, 12)

By the well formedness of the store given in the premise of this lemma, the above already holds for the
location environment M. The obligation discharges by inspecting the only new location in M’, namely ",
which is fresh and therefore cannot be in the domain of X

— Case (WF D.5;2):

c’ I—wafC M’;S

Of the requirements for this judgement, the only one that is not satisfied immediately by the well
formedness of the store given in the premise of the lemma is requirement WF D.5.2;2 The specific
requirement is to establish that

(' = (r,i)) e M'A
("~ (r,i+1))e M,
which follows immediately by inversion on D-LetLoc-Tag.
— Case (WF D.5;3):
A" N vy, M5 S
+ Case (WF D.5.3;1):
("~ (r,i+1)) e M'"Ai+1> Mazldz(r,S)

The first conjunct follows immediately from inversion on D-LetLoc-Tag. To establish the second, however,
we first need to establish that the address corresponding to location I’" is the highest index in the store
S. To do so, we need to appeal to the well formedness of the store given by the premise of this lemma.
In particular, we need to use the same requirement we are trying to prove, namely WF D.5.3;1, but in
this case, instantiating for I’" in the original location environment M. By inversion on T-LetLoc-Tag,
we have that A(7) =1'"" and I’ € N, and as a consequence of WF D.5.3;1,

(I'" = (r,i)) e M A > Mazldz(r,S).

Using the second conjunct above, this case discharges immediately.
35

+ Case (WF D.5.3;2): This obligation discharges immediately because, by inversion on T-LetLoc-Tag,
I"eN'.
* Case (WF D.5.3;3): The proof obligation is to establish that, for any constructor tag K,
("= (ryi+1))e M'A
(re (i1~ K))£9)

The first conjunct discharges by inversion on D-LetLoc-Tag, and the second as a consequence of having
already established just above that i + 1 > MaxIdx(r,S).

+ Case (WF D.5.3;4): The proof obligation is to establish that, for each (r — @) € A’, it is the case that
r ¢ dom(S). This case discharges because, from the premise of the lemma, this property holds for the
original environment A and store S, and, by inversion on T-LetLoc-Tag, continues to hold for A" and
S’

— Case (WF D.5;4):
dom(X)nN'=g
Because it is a bound location, I ¢ dom(X'), and by inversion on T-LetLoc-Tag, [€ N’, which discharges
the obligation.

CASE

[D-LETLOC-AFTER]

S; M;letloc I” = (after 7@l ") ine= S; M'; e

where M'=M u{l"~ (r,j5) }; (r,i) = M(L")
731, 1); S Few (7.5)

e The first of two proof obligations is to show that the result e’ of the given step of evaluation is well typed,
that is,
2, 2:C" AN A" N"; e : 7,
where 7 = 7@1'" . This proof obligation follows straightforwardly by inversion on T-LetLoc-After.
e The second obligation for this proof case is to show that
X0 AN vy M5 S.
The individual requirements, labeled WF D.5;1 - WF D.5;3, are handled by the following case analysis.
— Case (WF D.5;1): for each (I’" = 7) € X, there exists some i, i» such that
(I'" = (r,i1)) e M'A
T, <’F, 21)7 S Few (ra ZZ)
By the well formedness of the store given in the premise of this lemma, the above already holds for the
location environment M. The obligation discharges by inspecting the only new location in M’, namely ",
which is fresh and therefore cannot be in the domain of X.
— Case (WF D.5;2):
Cl '_wfcfc M/; S
Of the requirements for this judgement, the only one that is not satisfied immediately by the well

formedness of the store given in the premise of the lemma is requirement WF D.5.2;3 The specific
requirement is to establish that

(4" = (r,i)) e M'A
737, 0)5 S Few (7, 5)A
(I (r,j))eM’
which follows immediately by inversion on D-LetLoc-After.
— Case (WF D.5;3):
AN vy, M5 S
36

+ Case (WF D.5.3;1):
(I (r,j)) e M' Anj> Mazldz(r,S)

The first conjunct follows immediately from inversion on D-LetLoc-After. To establish the second,
however, we first need to establish that the end witness j of location ;" is the maximum index in
the store S. To do so, we need to appeal to the well formedness of the store given by the premise of
this lemma. In particular, we need to use the requirement WF D.5.3;2, instantiating for /;" in the
original location environment M. By inversion on T-LetLoc-After, we have that A(r)=54", 1" ¢ N,
and 7;(r,4); S Few (r,7). Thus, as a consequence of WF D.5.3;2,
j > Maxldx(r,S).
Using the second and third conjuncts above, this case discharges immediately.
* Case (WF D.5.3;2): This obligation discharges immediately because, by inversion on T-LetLoc-After,
le N
+ Case (WF D.5.3;3): The proof obligation is to establish that, for any constructor tag K,
(1> {r,5)) € M'A
(r—>(@G~K))¢S)
The first conjunct discharges by inversion on D-LetLoc-After, and the second as a consequence of having
already established just above that j > Mazldxz(r,S).
* Case (WF D.5.3;4): This case discharges straightforwardly, in a similar fashion to the previous case, for
D-LetLoc-Tag.
— Case (WF D.5;4):
dom(X)nN' =g
Because it is a bound location, [¢ dom(X'), and by inversion on T-LetLoc-After [€ N’, which discharges
this obligation.

CASE
[D-LETLOC-START]
S;M;letloc " = (start r)ine = S; M';e
where M' =M u{i"~ (r,0)}
e The first of two proof obligations is to show that the result e’ of the given step of evaluation is well typed,
that is,
25,0 AN '~ A":N"; ¢ : 7,
where 7 = 7@1'" . This obligation follows straightforwardly by inversion on T-LetLoc-Start.
e The second obligation for this proof case is to show that

X, C' AN vy M5 S.
The individual requirements, labeled WF D.5;1 - WF D.5;3, are handled by the following case analysis.
— Case (WF D.5;1): for each (I’ = 7) € X, there exists some iy, i such that
(ll [(’f‘, Zl>) € M’/\
75 <ra Z‘1); S Few <T7 i2>
By the well formedness of the store given in the premise of this lemma, the above already holds for the
location environment M. The obligation discharges by inspecting the only new location in M’, namely ",

which is fresh and therefore cannot be in the domain of X.
— Case (WF D.5;2):
C’ '_wfcfc M’;S
Of the requirements for this judgement, the only one that is not satisfied immediately by the well

formedness of the store given in the premise of the lemma is requirement WF D.5.2;1. The specific
requirement is to establish that

(I" »(r,0)) e M',

37

which follows immediately by inversion on D-LetLoc-Start.

— Case (WF D.5;3):

AN vy, M5 S

+ Case (WF D.5.3;1):

(1= (r,0)) e M'" A0 > Mazldz(r,S)

The first conjunct follows immediately from inversion on D-LetLoc-Start. To establish the second
conjunct above, it suffices establish that r ¢ dom(S), because, as such, Mazldz(r,S) = -1, by the
definition of MaxIdxz. This property follows from the well formedness of the store, in particular, from
rule WF D.5.3;4. The rule guarantees that, if (r — @) € A, then r ¢ dom(S), as needed. By inversion on
T-LetLoc-Start, we establish this precondition, thereby discharging the case.

* Case (WF D.5.3;2): This obligation discharges immediately because, by inversion on T-LetLoc-Start,

leN'.

+ Case (WF D.5.3;3): The proof obligation is to establish that, for any constructor tag K,

("~ (r,0)) e M'A
(re> (0~ K))¢S)

The first conjunct discharges by inversion on D-LetLoc-Start, and the second as a consequence of having
already established just above that 0 > MaxzlIdz(r,S).

Case (WF D.5.3;4): The obligation for this case is to establish that for each (r— @) e A" = Au{r 1"},
it is the case that r ¢ dom(S). The part of this obligation pertaining to environment A is given by
the premise of this lemma, and thus it only remains to establish that the property holds for the rest,
namely { r — [" }. This part discharges trivially, because (r — @) ¢ A’, thereby discharging this case.

— Case (WF D.5;4):

CASE

dom(X)nN' =g

This case discharges straightforwardly.

[D-LETREGION]
S; M;letregionrine = S;M;e

e The first of two proof obligations is to show that the result e’ of the given step of evaluation is well typed,

that is,

2, 5:C AN~ A" N"; e : 7,

where 7 = 7@I'"". This proof obligation follows straightforwardly by inversion on T-LetRegion.

e The second obligation for this proof case is to show that

X, C AN by M5 S.

The individual requirements, labeled WF D.5;1 - WF D.5;3, are handled by the following case analysis.

— Case (WF D.5;1): for each (I’ + 7) € X, there exists some iy, ip such that

(llr = (’I“,Z'l)) e MA
T5 (’f‘, Z1); S Few <T7 Z2>

This case discharges immediately by inversion of T-LetRegion and D-LetRegion, because none of the
relevant environments are affected by the transition.

— Case (WF D.5;2):

Cruwf,. M; 8

The case discharges in a fashion similar to the previous one.
38

— Case (WF D.5;3):
A,; N '_'wfca M, S
Of the requirements in this judgement, the only one that is affected by the new environment A’ is
requirement WF D.5.3;4. The specific obligation is to establish that, for each (r — @) € A’, it is the case
that 7 ¢ dom(S). By inversion on T-LetRegion, A’ = Au{r — @}, and therefore, the first part of the
obligation, that is, for A, is already given by the premise of this lemma. As such, it only remains to
establish that r ¢ dom(S), which follows from r being a fresh region, thereby ruling out it being in the
store, and thus discharging this case.
— Case (WF D.5;4):
dom(X)nN'=g

This case discharges straightforwardly.

CASE
[D-LET-VAL]
S;M;letx:7=wv in eg = S; M; ea[vy /]

e The first of two proof obligations is to show that the result es[v;/x] of the given step of evaluation is well
typed, that is,
@; %' Cy A; N = A; N ea[vr /2] s 1o@QIp ™.
By inversion on T-Let, we obtain the type of the value being bound
@:3:C;A; N+~ A;N; v : QL™
and we obtain the type of the body
I'": 5" C:A;N+ A;N; ey : Q"™
where
I'={z»mnanpm™}
Y=Xu{h" w1}
As such we can apply the Substitution Lemma D.1, as follows
@; X C; A;N = A Ny eo[on [x] [/L™] s Q"™

which discharges our obligation, given that the substitution of the bound location ;™ is the identity
substitution.

e Given the instantiations of X’ and M’ used by the previous step, the second obligation for this proof case
is to show that

X C AN by M5 S.
The individual requirements, labeled WF D.5;1 - WF D.5;3, are handled by the following case analysis.
— Case (WF D.5;1): for each (I'" = 7)€ X' = Y u{L™ ~ 71 }, there exists some i1, i, such that
(I'" = (r i) e MA
Ti{r, i) S Few (7, 12)
This obligation amounts to showing the above holds for the bound location ;™ , because the well
formedness of the store given by the premise of this lemma guarantees the property holds for locations
bound in ¥. The value v; bound at location ;" is a value and is well typed, and as such, there are only

two typing rules that could apply, namely T-Var and T-Concrete-Loc. By inversion on these rules, we
establish that

(h™—>m)eX.

39

Therefore, we can discharge this obligation by application of well formedness of the store, in particular,
the rule WF D.5;1 we are currently considering. Concretely, we discharge this obligation by instantiating
that rule to

(W™ = (r, 1)) e MA
T15(71,01); S Few (71, 82).
— Case (WF D.5;2):
Cruwfe M; S

This case discharges immediately because the relevant environments are affected by neither the of the
relevant typing nor the dynamic-semantic judgement.
— Case (WF D.5;3):
A; N '_wfca M; S

This case discharges immediately because the relevant environments are affected by neither the of the
relevant typing nor the dynamic-semantic judgement.
— Case (WF D.5;4):

dom(X')nN=g

This case discharges straightforwardly.
CASE
[D-LET-EXPR]
S;M;ep = S's M's e e1# v

S;M;letx:FT=e iney = S ;M';letx:7=¢] in ey

e The first of two proof obligations is to show that the result let x : 7 = €] in ey of the given step of evaluation
is well typed, that is,

;3 C; A N'= A"; N";let 2 : 7= ¢f in g : Q"2
The induction hypothesis is
If :5,C;A;N+A":N' e, : QL™
and Y5 C; AN =y M; S
and S;M;ep = S'; M'; e]
then for some X' 2 X,C' 2 C,
@; X, C" AN = A"y N ef @™

and X' C"; A" N w5 M'; S,

By inversion on T-Let, we establish that
@: X, C;A;N+-A";N": e, : @™,
and, by the premise of this lemma, we establish that
Y5 C AN by M3 S
and by inversion on D-Let-Expr we establish that
S;Miep = S'; M';eq.
Now, we can apply the above to the induction hypothesis to establish
For some X' 2 X, C'2C,
@; 50 AN = A" N ef s @i ™
and X' C; A N by M'; 5.
By inversion on T-Let, we also have that
I X' C;A N+ A", N"; eq: ,QI,"?,

40

where
F’: {J?HTl@llTl}
E,:{llrl = T1 }

By inspection on T-Let and the previous two typing judgements, that is, for e and e, we discharge this
case.
e The second obligation

250 AN by MY S
discharges immediately from the result of the induction hypothesis, which is established by the above.

CASE
[D-AppP]

S;Mif [T = S M e[T/ /"]
where fd = Function(f)
fiV—.T5 > Tp; (fx =e) = Freshen(fd)
l/’l‘

e The first of two proof obligations is to show that the result e’ = e[?/?][f:/l”'] of the given step of
evaluation is well typed, that is,

_

—_

@; 5" CyA;N"= A'; N"; e[W /?][F/l”’] : T,

where 7 = 7@[". To this end, we first establish typing judgements for the body of the callee and then the
arguments of the function, and finally discharge the first obligation by combining the two results using the
substitution lemma. By inversion on T-Function-Definition, the type judgement

;2" CiA;Nv+A;N';e:7Q[",

holds for body of the callee e, with constrants for any caller, such that " € N, [" ¢ N" and A(r) = 1", where

’ ’
N ’ N r
I'={x»mnQl ... ,2,>7,Q" }
7 A A
2h=All »7, ol T b

Regarding the arguments to the call, we obtain by inversion on T-App that

2,5, C;A; N - A; N v - 1,Q"

for ¢ € {1...n}. Furthermore, by inversion on T-App, we obtain that [" ¢ N, [" ¢ N’ and A(r) =1",
which altogether satisfy the requirements of T-Function-Definition. Now, by application of the Substitution
Lemma, we have that

2.5 C; AN - AN e[T [0 L). o]l 1L] ral.

Given the new environment N’ used by the previous step, the second obligation for this proof case is to
show that

2, C AN kyp M;S.
The individual requirements, labeled WF D.5;1 - WF D.5;3, are handled by the following case analysis.
— Case (WF D.5;1): for each (I'" = 7) € X, there exists some iy, i such that

(I'" = (r i) e MA (11)
{7, i1); 8" ew (7, 2) (12)
This case discharges immediately from the well formedness of the store given by the premise of this

lemma.
41

— Case (WF D.5;2):
C '_wfcfc M’ S
This case discharges immediately from the well formedness of the store given by the premise of this
lemma.
— Case (WF D.5;3):
A;N' 5., M; S
Of the requirements pertaining to this judgement, the only one potentially affected by the new environment
N’ is requirement WF D.5.3;2. The specific obligation therein is to establish that

(r=>1")eAn (I" = (ryis)) e M AL" ¢ N' A T3(r,is); S Few (T, 4)) =
ie > MaxIdz(r,S).
The reason the change to environment N’ might affect the above is because, if all the conjuncts above hold,
then it remains to establish that 4, > Mazldz(r,S) holds. However, it turns out that the fourth conjunct
above does not hold, i.e., there is no such end witness in the store S, thus relieving the obligation to
establish i, > MazIdx(r,S). The reason the end witness does not exist is yielded by the well formedness of
the store given by the premise of this lemma, in particular requirement WF D.5.3;1. That is, by inversion
on T-App, it is the case that
(re1")e Anl"€eN.
Therefore, requirement WF D.5.3;1 implies that
is > Maxldz(r,S).

As such, given that the store S remains unchanged and the above, it is straightforward to show that the
end witness starting at i; cannot exist, thereby discharging this case.
e Case (WF D.5:4):
dom(X)nN' =g
This case discharges because, from the well formedness of the store given by the premise of this lemma,
dom(X)n N =@, and because N' =N - {[" }.

42

	Abstract
	1 Introduction
	2 Background
	3 From a Region- to a Location-Calculus
	3.1 Formal Language and Grammar
	3.2 Static Semantics
	3.3 Dynamic Semantics
	3.4 Offsets and Indirections

	4 Compiling the Location Calculus
	4.1 Compiler (1/4): Finding Traversals
	4.2 Compiler (2/4): Implementing Random Access
	4.3 Compiler (3/4) Routing End Witnesses
	4.4 Compiler (4/4): Converting to NoCal
	4.5 LoCal Runtime System & Allocator

	5 High-Level Programs: HiCal to LoCal
	6 Related Work
	7 Evaluation
	7.1 SerializedSerialized Benchmark Programs
	7.2 Discussion of Results
	7.3 IO-intensive Benchmarks
	7.4 IO + large datatype: Traversing Racket ASTs

	8 Conclusions & Future Work
	Acknowledgments
	References
	A Evaluation Details
	A.1 Benchmark Descriptions

	B Related Work in Tree Layout and Allocation
	C LoCal Runtime System Details
	D Appendix: formalization and type-safety proof
	D.1 Grammar for LoCal
	D.2 Typing rules for LoCal
	D.3 Dynamic semantics rules for LoCal
	D.4 Global environments and metafunctions
	D.5 Well-formedness of the Store
	D.6 Technical lemmas

